gpt4 book ai didi

python - 如何使用 pandas 现有列之一中的列表创建新列,并从另一列的列表中分配值?

转载 作者:太空宇宙 更新时间:2023-11-03 21:05:41 27 4
gpt4 key购买 nike

我对大数据框有问题*大约 1kk 行,180 列。它从 3 列开始。第一列包含 id。第二行和第三行包含每行中的列表 - 它们是连接的(第一行 - 第一列列表中的第一个元素与第二列列表中的第一个元素连接:

ids | fruits | count |

1 | [grape, apple, banana] | [7.0, 4.0, 3.0]

2 | [mango, banana, strawberry, grape] | [5.0, 8.0, 15.0, 2.0]

3 | [apple, avocado] | [9.0, 1.0]
4 | NaN | NaN
5 | [pummelo] | [12.0]

我想使用“fruits”列中的列表元素作为新列的名称,该新列的值将分配给行和水果。但没有重复的列,如下所示:

ids | grape | apple | banana | mango | strawberry | avocado | pummelo

1 | 7.0 | 4.0 | 3.0 | NaN | NaN | NaN | NaN

2 | 2.0 | NaN | 8.0 | 5.0 | 15.0 | NaN | NaN

3 | NaN | 9.0 | NaN | NaN | NaN | 1.0 | NaN

4 | NaN | NaN | NaN | NaN | NaN | NaN | NaN

5 | NaN | NaN | NaN | NaN | NaN | NaN | 12.0

集合(所有列表的非重复总和)“水果”中唯一元素的计数为 180,这就是为什么最后我想要 180 列。

问题是速度。我尝试过 pandas iterrows(),但是当涉及到所有 1kk 行时,这就变成了永无休止的故事。下面是我尝试过的代码。

#making an example dataframe

import numpy as np
fruit_df = pd. DataFrame(columns=['ids','fruits','count'])
ids = [1,2,3,4,5]
fruits = [['grape', 'apple', 'banana'], ['mango', 'banana', 'strawberry', 'grape'], ['apple', 'avocado'], np.nan, ['pummelo']]
count = [[7.0, 4.0, 3.0],[5.0, 8.0, 15.0, 2.0], [9.0, 1.0], np.nan, [12.0]]


#creating fruits columns in dataframe - this one timing is ok , fine for me (about 15 mins)

fruits_columns=[]
for row in fruit_df['fruits']:
if type(row)==list:
fruits_columns.append(row)
else:
fruits_columns.append(list())

import itertools
all_fruits = list(itertools.chain(*fruits_columns))

all_fruits = set(all_fruits)

for fruit in all_fruits:
fruit_df[fruit]=np.nan


#iterating over the data - here is main problem - takes very, very long time.. works well for this tiny dataset but when it comes to 1000000 rows and 180 columns...

def iter_over_rows(data):
for index, row in data.iterrows():
if type(row['fruits'])!=float:
for cat in range(len(row['fruits'])):
data[row['fruits'][cat]][index] = row['count'][cat]

我想加快数据处理速度。考虑过用所有 180 个水果作为键来制作字典,并将它们算作值 - 但最终顺序会被损坏。如果您知道如何更快地做到这一点,那就太好了。干杯!

最佳答案

这将执行您想要的所有操作,但会删除 ids 4,因为它们仅包含 NA 值。

设置是相同的:

fruit_df = pd. DataFrame(columns=['ids','fruits','count'])
ids = [1,2,3,4,5]
fruits = [['grape', 'apple', 'banana'], ['mango', 'banana', 'strawberry', 'grape'], ['apple', 'avocado'], np.nan, ['\
pummelo']]
count = [[7.0, 4.0, 3.0],[5.0, 8.0, 15.0, 2.0], [9.0, 1.0], np.nan, [12.0]]

fruit_df['ids'] = ids
fruit_df['fruits'] = fruits
fruit_df['count'] = count

我们希望将包含列表的行转换为堆叠系列(这基本上只是将列表扩展到新行,同时保留行的 ID:

fruit_df.set_index(['ids'], inplace=True)
fruit_series = fruit_df.apply(lambda x: pd.Series(x['fruits']), axis=1).stack()
count_series = fruit_df.apply(lambda x: pd.Series(x['count']), axis=1).stack()

final_df = pd.DataFrame()
final_df['Fruits'] = fruit_series
final_df['Counts'] = count_series
print(final_df)

所以我们看到 Final_df 看起来像:

           Fruits  Counts
ids
1 0 grape 7.0
1 apple 4.0
2 banana 3.0
2 0 mango 5.0
1 banana 8.0
2 strawberry 15.0
3 grape 2.0
3 0 apple 9.0
1 avocado 1.0
5 0 pummelo 12.0

好吧,现在我们已经扩展了列表行以匹配它们的 id,但是我们现在看到了这个 multi_index df,这是我们不想要的,所以我们将删除它,然后将我们的表旋转为 id 索引,并获得结果栏目:

final_df = final_df.reset_index().drop('level_1', axis=1)
final_df = final_df.pivot(index='ids', columns = 'Fruits', values = 'Counts')
print(final_df)

返回:

Fruits  apple avocado banana grape mango pummelo strawberry
ids
1 4.0 NaN 3.0 7.0 NaN NaN NaN
2 NaN NaN 8.0 2.0 5.0 NaN 15.0
3 9.0 1.0 NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN 12.0 NaN

非常接近,我希望这对您有用!整个代码组合起来:

import pandas as pd
import numpy as np

fruit_df = pd. DataFrame(columns=['ids','fruits','count'])
ids = [1,2,3,4,5]
fruits = [['grape', 'apple', 'banana'], ['mango', 'banana', 'strawberry', 'grape'], ['apple', 'avocado'], np.nan, ['\
pummelo']]
count = [[7.0, 4.0, 3.0],[5.0, 8.0, 15.0, 2.0], [9.0, 1.0], np.nan, [12.0]]

fruit_df['ids'] = ids
fruit_df['fruits'] = fruits
fruit_df['count'] = count


fruit_df.set_index(['ids'], inplace=True)
fruit_series = fruit_df.apply(lambda x: pd.Series(x['fruits']), axis=1).stack()
count_series = fruit_df.apply(lambda x: pd.Series(x['count']), axis=1).stack()

final_df = pd.DataFrame()

final_df['Fruits'] = fruit_series
final_df['Counts'] = count_series

final_df = final_df.reset_index().drop('level_1', axis=1)
final_df = final_df.pivot(index='ids', columns = 'Fruits', values = 'Counts')

print(final_df)

关于python - 如何使用 pandas 现有列之一中的列表创建新列,并从另一列的列表中分配值?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55424336/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com