- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
对于图像聚类或分类等任务,我们通常将图像转换为数字特征向量。现在,我不想为整个图像计算特征向量,而是想为图像的片段生成特征(不限于矩形片段)。例如,使用 SLIC 算法 ( skimage.segmentation.slic ) 我可以将图像分割成超像素。现在我想为每个段生成特征(区域大小、位置、颜色、形状和纹理特征),如第 5.3 节所述
Gould, Stephen, et al. "Multi-class segmentation with relative location prior." International Journal of Computer Vision 80.3 (2008): 300-316.
在给定图像和片段掩码的情况下,python 中是否存在可以帮助我生成这些特征的现有库?我可以使用 skimage 执行此操作吗?
最佳答案
我不知道有任何这样的库。但是,前段时间我需要自己计算特征,您可以在下面找到一些代码片段。尽管代码不是 Python 语言,但它可能对您有所帮助。请注意,我试验过超体素;因此,您可能会在其中找到一些 PCL 引用。
如果您开始自己实现功能,请查看以下出版物以获取一些想法(两种情况都在表 1 中):
Derek Hoiem, Andrew N. Stein, Alexei A. Efros, Martial Hebert:
Recovering Occlusion Boundaries from a Single Image. ICCV 2007: 1-8
Joseph Tighe, Svetlana Lazebnik:
Superparsing - Scalable Nonparametric Image Parsing with Superpixels. International Journal of Computer Vision 101(2): 329-349 (2013)
请注意,并非头文件中的所有定义都已实际实现;然而,它们可以作为灵感。
标题:
#ifndef SUPERPIXELFEATURES_H
#define SUPERPIXELFEATURES_H
#include <opencv2/opencv.hpp>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <Eigen/Dense>
#include <string>
namespace features {
/**
* Class SuperpixelFeatures represents a set of features computed for
* each superpixel in a given image.
*/
class SuperpixelFeatures {
public:
/**
* Construct superpixel features form only an image.
*
* @param image
* @param labels
*/
SuperpixelFeatures(const cv::Mat &image, int** labels);
/**
* Construct superpixel features from the image and its depth and
* a given superpixel segmentation.
*
* @param image
* @param depth
* @param labels
*/
SuperpixelFeatures(const cv::Mat &image, const cv::Mat &depth, int** labels);
/**
* Constructu superpixel features form the image and a point cloud and
* a given superpixel segmentation.
*
* @param image
* @param pointCloud
*/
SuperpixelFeatures(const cv::Mat &image, pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud, int** labels);
/**
* Destructor.
*/
~SuperpixelFeatures();
/**
* Add maximum color in each channel to the features.
*
* @return
*/
Eigen::Vector2i addMaximumColor();
/**
* Add minimum color in each channel to the features.
*
* @return
*/
Eigen::Vector2i addMinimumColor();
/**
* Add mean color to the features.
*
* @return
*/
Eigen::Vector2i addMeanBGRColor();
/**
* Add mean position to the features.
*
* @return
*/
Eigen::Vector2i addMean3DPosition();
/**
* Add mean position (pixel coordinates) to the features.
*
* @return
*/
Eigen::Vector2i addMean2DPosition();
/**
* Add the surface normal (mean normal) to the features.
*
* @return
*/
Eigen::Vector2i addMeanNormal();
/**
* Add a 3D bounding box of the superpixel to the features.
*
* @return
*/
Eigen::Vector2i addBoundingBox();
/**
* Add the compactness of the superpixel in its 2D sens to the features.
*
* @return
*/
Eigen::Vector2i addCompactness();
/**
* Add the area in pixels to the features.
*
* @return
*/
Eigen::Vector2i addArea();
/**
* Add the color covariance matrix to the features.
*
* @return
*/
Eigen::Vector2i addColorCovariance();
/**
* Add the position covariance matrix to the features.
* @return
*/
Eigen::Vector2i addPositionCovariance();
/**
* Add point-ness, curve-ness and surface-ness to the features.
*
* @return
*/
Eigen::Vector2i addSuperpixelStatistics();
/**
* Add a color histogram of the given number of bins to the features.
*
* @param bins
* @return
*/
Eigen::Vector2i addColorHistogram(int bins);
/**
* Add the ground truth label to the features.
*
* @param labels
* @return
*/
Eigen::Vector2i addGroundTruth(int** labels);
/**
* Get the dimension of the computed features.
*
* @return
*/
int getFeatureDimension() const;
/**
* Get the total number of superpixels.
*
* @return
*/
int getNumberOfSuperpixels() const;
/**
* Get pointer to comptued features.
*
* @return
*/
Eigen::MatrixXd* getFeatures() const;
protected:
void appendFeatures(Eigen::MatrixXd features);
cv::Mat* image;
int height;
int width;
int** labels;
int numberOfSuperpixels;
pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud;
bool pointCloudAvailable;
Eigen::MatrixXd* features;
};
}
来源:
#include <pcl/features/normal_3d.h>
#include <pcl/features/integral_image_normal.h>
#include "Tools.h"
#include "SuperpixelFeatures.h"
SuperpixelFeatures::SuperpixelFeatures(const cv::Mat &image, int** labels) {
this->image = new cv::Mat();
int channels = image.channels();
assert(channels == 1 || channels == 3);
if (channels == 1) {
image.convertTo(*this->image, CV_8UC1);
}
else if (channels == 3) {
image.convertTo(*this->image, CV_8UC3);
cv::cvtColor(*this->image, *this->image, SEEDS_REVISED_OPENCV_BGR2Lab, 3);
}
this->height = image.rows;
this->width = image.cols;
this->pointCloudAvailable = false;
// Copy labels.
this->labels = new int*[this->height];
for (int i = 0; i < this->height; ++i) {
this->labels[i] = new int[this->width];
for (int j = 0; j < this->width; ++j) {
this->labels[i][j] = labels[i][j];
}
}
this->numberOfSuperpixels = seeds_revised::tools::Integrity::countSuperpixels(this->labels, this->height, this->width);
seeds_revised::tools::Integrity::relabel(this->labels, this->height, this->width);
this->features = new Eigen::MatrixXd(this->numberOfSuperpixels, 1);
// Initialize first column with labels.
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
(*this->features)(label, 0) = label;
}
}
SuperpixelFeatures::SuperpixelFeatures(const cv::Mat &image, pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud, int** labels) {
assert(image.rows == (int) pointCloud->height);
assert(image.cols == (int) pointCloud->width);
this->image = new cv::Mat();
int channels = image.channels();
assert(channels == 1 || channels == 3);
if (channels == 1) {
image.convertTo(*this->image, CV_8UC1);
}
else if (channels == 3) {
image.convertTo(*this->image, CV_8UC3);
cv::cvtColor(*this->image, *this->image, SEEDS_REVISED_OPENCV_BGR2Lab, 3);
}
this->pointCloud = pointCloud;
this->height = pointCloud->height;
this->width = pointCloud->width;
this->pointCloudAvailable = true;
// Copy labels.
this->labels = new int*[this->height];
for (int i = 0; i < this->height; ++i) {
this->labels[i] = new int[this->width];
for (int j = 0; j < this->width; ++j) {
this->labels[i][j] = labels[i][j];
}
}
this->numberOfSuperpixels = seeds_revised::tools::Integrity::countSuperpixels(this->labels, this->height, this->width);
seeds_revised::tools::Integrity::relabel(this->labels, this->height, this->width);
this->features = new Eigen::MatrixXd(this->numberOfSuperpixels, 1);
// Initialize first column with labels.
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
(*this->features)(label, 0) = label;
}
}
SuperpixelFeatures::~SuperpixelFeatures() {
delete this->image;
for (int i = 0; i < this->height; ++i) {
delete[] this->labels[i];
}
delete[] this->labels;
}
Eigen::Vector2i SuperpixelFeatures::addMeanBGRColor() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);
double meanB = 0;
double meanG = 0;
double meanR = 0;
int count = 0;
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
meanB = 0;
meanG = 0;
meanR = 0;
count = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanB += this->image->at<cv::Vec3b>(i, j)[0];
meanG += this->image->at<cv::Vec3b>(i, j)[1];
meanR += this->image->at<cv::Vec3b>(i, j)[2];
++count;
}
}
}
(*this->features)(label, cols) = meanB/count;
(*this->features)(label, cols + 1) = meanG/count;
(*this->features)(label, cols + 2) = meanR/count;
}
return Eigen::Vector2i(cols, cols + 2);
}
Eigen::Vector2i SuperpixelFeatures::addMean3DPosition() {
assert(this->pointCloudAvailable);
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);
double meanX = 0;
double meanY = 0;
double meanZ = 0;
int count = 0;
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
meanX = 0;
meanY = 0;
meanZ = 0;
count = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanX += (*this->pointCloud)(j, i).x;
meanY += (*this->pointCloud)(j, i).y;
meanZ += (*this->pointCloud)(j, i).z;
++count;
}
}
}
(*this->features)(label, cols) = meanX/count;
(*this->features)(label, cols + 1) = meanY/count;
(*this->features)(label, cols + 2) = meanZ/count;
}
return Eigen::Vector2i(cols, cols + 2);
}
Eigen::Vector2i SuperpixelFeatures::addMean2DPosition() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 2);
double meanX = 0;
double meanY = 0;
int count = 0;
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
meanX = 0;
meanY = 0;
count = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanX += j;
meanY += i;
++count;
}
}
}
(*this->features)(label, cols) = meanX/count;
(*this->features)(label, cols + 1) = meanY/count;
}
return Eigen::Vector2i(cols, cols + 1);
}
Eigen::Vector2i SuperpixelFeatures::addMeanNormal() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
std::vector<int> indices;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
indices.push_back(i*cols + j);
}
}
}
Eigen::Vector4f superpixelCentroid;
Eigen::Matrix3f superpixelCovariance;
Eigen::Vector3f superpixelNormal;
pcl::compute3DCentroid(*pointCloud, indices, superpixelCentroid);
pcl::computeCovarianceMatrix(*pointCloud, indices, superpixelCentroid, superpixelCovariance);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> superpixelEigenValues(superpixelCovariance);
superpixelNormal = superpixelEigenValues.eigenvectors().col(0);
(*this->features)(label, cols) = superpixelNormal(0);
(*this->features)(label, cols + 1) = superpixelNormal(1);
(*this->features)(label, cols + 2) = superpixelNormal(2);
}
return Eigen::Vector2i(cols, cols + 2);
}
Eigen::Vector2i SuperpixelFeatures::addArea() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 1);
int area = 0;
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
area = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
++area;
}
}
}
(*this->features)(label, cols) = area;
}
return Eigen::Vector2i(cols, cols);
}
Eigen::Vector2i SuperpixelFeatures::addSuperpixelStatistics() {
assert(this->pointCloudAvailable);
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
std::vector<int> indices;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
indices.push_back(i*cols + j);
}
}
}
Eigen::Vector4f superpixelCentroid;
Eigen::Matrix3f superpixelCovariance;
Eigen::Vector3f superpixelNormal;
pcl::compute3DCentroid(*pointCloud, indices, superpixelCentroid);
pcl::computeCovarianceMatrix(*pointCloud, indices, superpixelCentroid, superpixelCovariance);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> superpixelEigenValues(superpixelCovariance);
// Point-ness:
(*this->features)(label, cols) = superpixelEigenValues.eigenvalues()(0);
(*this->features)(label, cols + 1) = superpixelEigenValues.eigenvalues()(2) - superpixelEigenValues.eigenvalues()(1);
(*this->features)(label, cols + 2) = superpixelEigenValues.eigenvalues()(1) - superpixelEigenValues.eigenvalues()(0);
}
return Eigen::Vector2i(cols, cols + 2);
}
Eigen::Vector2i SuperpixelFeatures::addColorHistogram(int bins) {
assert(bins > 0 && bins < 10);
int histogramSize = std::pow(bins, 3);
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + histogramSize);
int* normalization = new int[this->numberOfSuperpixels];
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
normalization[label] = 0;
for (int k = 0; k < histogramSize; ++k) {
(*this->features)(label, cols + k) = 0;
}
}
int denominator = ceil(256./((double) bins));
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
int bin = this->image->at<cv::Vec3b>(i, j)[0]/denominator + bins*(this->image->at<cv::Vec3b>(i, j)[1]/denominator) + bins*bins*(this->image->at<cv::Vec3b>(i, j)[2]/denominator);
++(*this->features)(this->labels[i][j], cols + bin);
++normalization[this->labels[i][j]];
}
}
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
for (int k = 0; k < histogramSize; ++k) {
(*this->features)(label, cols + k) /= normalization[label];
}
}
return Eigen::Vector2i(cols, cols + histogramSize);
}
Eigen::Vector2i SuperpixelFeatures::addGroundTruth(int** labels) {
int numberOfLabels = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (labels[i][j] > numberOfLabels) {
numberOfLabels = labels[i][j];
}
}
}
// Remember that zero may be a label as well.
numberOfLabels = numberOfLabels + 1;
Eigen::MatrixXi intersection(this->numberOfSuperpixels, numberOfLabels);
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
assert(this->labels[i][j] < this->numberOfSuperpixels);
assert(labels[i][j] < numberOfLabels);
++intersection(this->labels[i][j], labels[i][j]);
}
}
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
int maxIntersection = 0;
int maxGTLabel = 0;
for (int gtLabel = 0; gtLabel < numberOfLabels; ++gtLabel) {
if (intersection(label, gtLabel) > maxIntersection) {
maxIntersection = intersection(label, gtLabel);
maxGTLabel = gtLabel;
}
}
(*this->features)(label, 0) = maxGTLabel;
}
return Eigen::Vector2i(0, 0);
}
int SuperpixelFeatures::getFeatureDimension() const {
return this->features->cols();
}
Eigen::MatrixXd* SuperpixelFeatures::getFeatures() const {
return this->features;
}
关于python - 计算图像片段(超像素)的特征向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37079738/
我正在尝试学习 Knockout 并尝试创建一个照片 uploader 。我已成功将一些图像存储在数组中。现在我想回帖。在我的 knockout 码(Javascript)中,我这样做: 我在 Jav
我正在使用 php 编写脚本。我的典型问题是如何在 mysql 中添加一个有很多替代文本和图像的问题。想象一下有机化学中具有苯结构的描述。 最有效的方法是什么?据我所知,如果我有一个图像,我可以在数据
我在两个图像之间有一个按钮,我想将按钮居中到图像高度。有人可以帮帮我吗? Entrar
下面的代码示例可以在这里查看 - http://dev.touch-akl.com/celebtrations/ 我一直在尝试做的是在 Canvas 上绘制 2 个图像(发光,然后耀斑。这些图像的链接
请检查此https://jsfiddle.net/rhbwpn19/4/ 图像预览对于第一篇帖子工作正常,但对于其他帖子则不然。 我应该在这里改变什么? function readURL(input)
我对 Canvas 有疑问。我可以用单个图像绘制 Canvas ,但我不能用单独的图像绘制每个 Canvas 。- 如果数据只有一个图像,它工作正常,但数据有多个图像,它不工作你能帮帮我吗? va
我的问题很简单。如何获取 UIImage 的扩展类型?我只能将图像作为 UIImage 而不是它的名称。图像可以是静态的,也可以从手机图库甚至文件路径中获取。如果有人可以为此提供一点帮助,将不胜感激。
我有一个包含 67 个独立路径的 SVG 图像。 是否有任何库/教程可以为每个路径创建单独的光栅图像(例如 PNG),并可能根据路径 ID 命名它们? 最佳答案 谢谢大家。我最终使用了两个答案的组合。
我想将鼠标悬停在一张图片(音乐专辑)上,然后播放一张唱片,所以我希望它向右移动并旋转一点,当它悬停时我希望它恢复正常动画片。它已经可以向右移动,但我无法让它随之旋转。我喜欢让它尽可能简单,因为我不是编
Retina iOS 设备不显示@2X 图像,它显示 1X 图像。 我正在使用 Xcode 4.2.1 Build 4D502,该应用程序的目标是 iOS 5。 我创建了一个测试应用(主/细节)并添加
我正在尝试从头开始以 Angular 实现图像 slider ,并尝试复制 w3school基于图像 slider 。 下面我尝试用 Angular 实现,谁能指导我如何使用 Angular 实现?
我正在尝试获取图像的图像数据,其中 w= 图像宽度,h = 图像高度 for (int i = x; i imageData[pos]>0) //Taking data (here is the pr
我的网页最初通过在 javascript 中动态创建图像填充了大约 1000 个缩略图。由于权限问题,我迁移到 suPHP。现在不用标准 标签本身 我正在通过这个 php 脚本进行检索 $file
我正在尝试将 python opencv 图像转换为 QPixmap。 我按照指示显示Page Link我的代码附在下面 img = cv2.imread('test.png')[:,:,::1]/2
我试图在这个 Repository 中找出语义分割数据集的 NYU-v2 . 我很难理解图像标签是如何存储的。 例如,给定以下图像: 对应的标签图片为: 现在,如果我在 OpenCV 中打开标签图像,
import java.util.Random; class svg{ public static void main(String[] args){ String f="\"
我有一张 8x8 的图片。 (位图 - 可以更改) 我想做的是能够绘制一个形状,给定一个 Path 和 Paint 对象到我的 SurfaceView 上。 目前我所能做的就是用纯色填充形状。我怎样才
要在页面上显示图像,你需要使用源属性(src)。src 指 source 。源属性的值是图像的 URL 地址。 定义图像的语法是: 在浏览器无法载入图像时,替换文本属性告诉读者她们失去的信息。此
**MMEditing是基于PyTorch的图像&视频编辑开源工具箱,支持图像和视频超分辨率(super-resolution)、图像修复(inpainting)、图像抠图(matting)、
我正在尝试通过资源文件将图像插入到我的程序中,如下所示: green.png other files 当我尝试使用 QImage 或 QPixm
我是一名优秀的程序员,十分优秀!