gpt4 book ai didi

python - 计算图像片段(超像素)的特征向量

转载 作者:太空宇宙 更新时间:2023-11-03 21:05:05 25 4
gpt4 key购买 nike

对于图像聚类或分类等任务,我们通常将图像转换为数字特征向量。现在,我不想为整个图像计算特征向量,而是想为图像的片段生成特征(不限于矩形片段)。例如,使用 SLIC 算法 ( skimage.segmentation.slic ) 我可以将图像分割成超像素。现在我想为每个段生成特征(区域大小、位置、颜色、形状和纹理特征),如第 5.3 节所述

Gould, Stephen, et al. "Multi-class segmentation with relative location prior." International Journal of Computer Vision 80.3 (2008): 300-316.

在给定图像和片段掩码的情况下,python 中是否存在可以帮助我生成这些特征的现有库?我可以使用 skimage 执行此操作吗?

最佳答案

我不知道有任何这样的库。但是,前段时间我需要自己计算特征,您可以在下面找到一些代码片段。尽管代码不是 Python 语言,但它可能对您有所帮助。请注意,我试验过超体素;因此,您可能会在其中找到一些 PCL 引用。

如果您开始自己实现功能,请查看以下出版物以获取一些想法(两种情况都在表 1 中):

Derek Hoiem, Andrew N. Stein, Alexei A. Efros, Martial Hebert:
Recovering Occlusion Boundaries from a Single Image. ICCV 2007: 1-8
Joseph Tighe, Svetlana Lazebnik:
Superparsing - Scalable Nonparametric Image Parsing with Superpixels. International Journal of Computer Vision 101(2): 329-349 (2013)

请注意,并非头文件中的所有定义都已实际实现;然而,它们可以作为灵感。

标题:

#ifndef SUPERPIXELFEATURES_H
#define SUPERPIXELFEATURES_H

#include <opencv2/opencv.hpp>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <Eigen/Dense>
#include <string>

namespace features {

/**
* Class SuperpixelFeatures represents a set of features computed for
* each superpixel in a given image.
*/
class SuperpixelFeatures {

public:

/**
* Construct superpixel features form only an image.
*
* @param image
* @param labels
*/
SuperpixelFeatures(const cv::Mat &image, int** labels);

/**
* Construct superpixel features from the image and its depth and
* a given superpixel segmentation.
*
* @param image
* @param depth
* @param labels
*/
SuperpixelFeatures(const cv::Mat &image, const cv::Mat &depth, int** labels);

/**
* Constructu superpixel features form the image and a point cloud and
* a given superpixel segmentation.
*
* @param image
* @param pointCloud
*/
SuperpixelFeatures(const cv::Mat &image, pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud, int** labels);

/**
* Destructor.
*/
~SuperpixelFeatures();

/**
* Add maximum color in each channel to the features.
*
* @return
*/
Eigen::Vector2i addMaximumColor();

/**
* Add minimum color in each channel to the features.
*
* @return
*/
Eigen::Vector2i addMinimumColor();

/**
* Add mean color to the features.
*
* @return
*/
Eigen::Vector2i addMeanBGRColor();

/**
* Add mean position to the features.
*
* @return
*/
Eigen::Vector2i addMean3DPosition();

/**
* Add mean position (pixel coordinates) to the features.
*
* @return
*/
Eigen::Vector2i addMean2DPosition();

/**
* Add the surface normal (mean normal) to the features.
*
* @return
*/
Eigen::Vector2i addMeanNormal();

/**
* Add a 3D bounding box of the superpixel to the features.
*
* @return
*/
Eigen::Vector2i addBoundingBox();

/**
* Add the compactness of the superpixel in its 2D sens to the features.
*
* @return
*/
Eigen::Vector2i addCompactness();

/**
* Add the area in pixels to the features.
*
* @return
*/
Eigen::Vector2i addArea();

/**
* Add the color covariance matrix to the features.
*
* @return
*/
Eigen::Vector2i addColorCovariance();

/**
* Add the position covariance matrix to the features.
* @return
*/
Eigen::Vector2i addPositionCovariance();

/**
* Add point-ness, curve-ness and surface-ness to the features.
*
* @return
*/
Eigen::Vector2i addSuperpixelStatistics();

/**
* Add a color histogram of the given number of bins to the features.
*
* @param bins
* @return
*/
Eigen::Vector2i addColorHistogram(int bins);

/**
* Add the ground truth label to the features.
*
* @param labels
* @return
*/
Eigen::Vector2i addGroundTruth(int** labels);

/**
* Get the dimension of the computed features.
*
* @return
*/
int getFeatureDimension() const;

/**
* Get the total number of superpixels.
*
* @return
*/
int getNumberOfSuperpixels() const;

/**
* Get pointer to comptued features.
*
* @return
*/
Eigen::MatrixXd* getFeatures() const;

protected:

void appendFeatures(Eigen::MatrixXd features);

cv::Mat* image;
int height;
int width;

int** labels;
int numberOfSuperpixels;

pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud;
bool pointCloudAvailable;

Eigen::MatrixXd* features;

};
}

来源:

#include <pcl/features/normal_3d.h>
#include <pcl/features/integral_image_normal.h>
#include "Tools.h"
#include "SuperpixelFeatures.h"

SuperpixelFeatures::SuperpixelFeatures(const cv::Mat &image, int** labels) {

this->image = new cv::Mat();
int channels = image.channels();

assert(channels == 1 || channels == 3);

if (channels == 1) {
image.convertTo(*this->image, CV_8UC1);
}
else if (channels == 3) {
image.convertTo(*this->image, CV_8UC3);
cv::cvtColor(*this->image, *this->image, SEEDS_REVISED_OPENCV_BGR2Lab, 3);
}

this->height = image.rows;
this->width = image.cols;

this->pointCloudAvailable = false;

// Copy labels.
this->labels = new int*[this->height];
for (int i = 0; i < this->height; ++i) {
this->labels[i] = new int[this->width];

for (int j = 0; j < this->width; ++j) {
this->labels[i][j] = labels[i][j];
}
}

this->numberOfSuperpixels = seeds_revised::tools::Integrity::countSuperpixels(this->labels, this->height, this->width);
seeds_revised::tools::Integrity::relabel(this->labels, this->height, this->width);

this->features = new Eigen::MatrixXd(this->numberOfSuperpixels, 1);

// Initialize first column with labels.
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
(*this->features)(label, 0) = label;
}
}

SuperpixelFeatures::SuperpixelFeatures(const cv::Mat &image, pcl::PointCloud<pcl::PointXYZ>::Ptr pointCloud, int** labels) {
assert(image.rows == (int) pointCloud->height);
assert(image.cols == (int) pointCloud->width);

this->image = new cv::Mat();
int channels = image.channels();

assert(channels == 1 || channels == 3);

if (channels == 1) {
image.convertTo(*this->image, CV_8UC1);
}
else if (channels == 3) {
image.convertTo(*this->image, CV_8UC3);
cv::cvtColor(*this->image, *this->image, SEEDS_REVISED_OPENCV_BGR2Lab, 3);
}

this->pointCloud = pointCloud;
this->height = pointCloud->height;
this->width = pointCloud->width;
this->pointCloudAvailable = true;

// Copy labels.
this->labels = new int*[this->height];
for (int i = 0; i < this->height; ++i) {
this->labels[i] = new int[this->width];

for (int j = 0; j < this->width; ++j) {
this->labels[i][j] = labels[i][j];
}
}

this->numberOfSuperpixels = seeds_revised::tools::Integrity::countSuperpixels(this->labels, this->height, this->width);
seeds_revised::tools::Integrity::relabel(this->labels, this->height, this->width);

this->features = new Eigen::MatrixXd(this->numberOfSuperpixels, 1);

// Initialize first column with labels.
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
(*this->features)(label, 0) = label;
}
}

SuperpixelFeatures::~SuperpixelFeatures() {
delete this->image;

for (int i = 0; i < this->height; ++i) {
delete[] this->labels[i];
}

delete[] this->labels;
}

Eigen::Vector2i SuperpixelFeatures::addMeanBGRColor() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);

double meanB = 0;
double meanG = 0;
double meanR = 0;
int count = 0;

for (int label = 0; label < this->numberOfSuperpixels; ++label) {

meanB = 0;
meanG = 0;
meanR = 0;
count = 0;

for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanB += this->image->at<cv::Vec3b>(i, j)[0];
meanG += this->image->at<cv::Vec3b>(i, j)[1];
meanR += this->image->at<cv::Vec3b>(i, j)[2];
++count;
}
}
}

(*this->features)(label, cols) = meanB/count;
(*this->features)(label, cols + 1) = meanG/count;
(*this->features)(label, cols + 2) = meanR/count;
}

return Eigen::Vector2i(cols, cols + 2);
}

Eigen::Vector2i SuperpixelFeatures::addMean3DPosition() {
assert(this->pointCloudAvailable);

int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);

double meanX = 0;
double meanY = 0;
double meanZ = 0;
int count = 0;

for (int label = 0; label < this->numberOfSuperpixels; ++label) {

meanX = 0;
meanY = 0;
meanZ = 0;
count = 0;

for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanX += (*this->pointCloud)(j, i).x;
meanY += (*this->pointCloud)(j, i).y;
meanZ += (*this->pointCloud)(j, i).z;
++count;
}
}
}

(*this->features)(label, cols) = meanX/count;
(*this->features)(label, cols + 1) = meanY/count;
(*this->features)(label, cols + 2) = meanZ/count;
}

return Eigen::Vector2i(cols, cols + 2);
}

Eigen::Vector2i SuperpixelFeatures::addMean2DPosition() {

int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 2);

double meanX = 0;
double meanY = 0;
int count = 0;

for (int label = 0; label < this->numberOfSuperpixels; ++label) {

meanX = 0;
meanY = 0;
count = 0;

for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
meanX += j;
meanY += i;
++count;
}
}
}

(*this->features)(label, cols) = meanX/count;
(*this->features)(label, cols + 1) = meanY/count;
}

return Eigen::Vector2i(cols, cols + 1);
}

Eigen::Vector2i SuperpixelFeatures::addMeanNormal() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);

for (int label = 0; label < this->numberOfSuperpixels; ++label) {
std::vector<int> indices;

for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
indices.push_back(i*cols + j);
}
}
}

Eigen::Vector4f superpixelCentroid;
Eigen::Matrix3f superpixelCovariance;
Eigen::Vector3f superpixelNormal;

pcl::compute3DCentroid(*pointCloud, indices, superpixelCentroid);
pcl::computeCovarianceMatrix(*pointCloud, indices, superpixelCentroid, superpixelCovariance);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> superpixelEigenValues(superpixelCovariance);
superpixelNormal = superpixelEigenValues.eigenvectors().col(0);

(*this->features)(label, cols) = superpixelNormal(0);
(*this->features)(label, cols + 1) = superpixelNormal(1);
(*this->features)(label, cols + 2) = superpixelNormal(2);
}

return Eigen::Vector2i(cols, cols + 2);
}

Eigen::Vector2i SuperpixelFeatures::addArea() {
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 1);

int area = 0;
for (int label = 0; label < this->numberOfSuperpixels; ++label) {

area = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
++area;
}
}
}

(*this->features)(label, cols) = area;
}

return Eigen::Vector2i(cols, cols);
}

Eigen::Vector2i SuperpixelFeatures::addSuperpixelStatistics() {
assert(this->pointCloudAvailable);

int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + 3);

for (int label = 0; label < this->numberOfSuperpixels; ++label) {
std::vector<int> indices;

for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (this->labels[i][j] == label) {
indices.push_back(i*cols + j);
}
}
}

Eigen::Vector4f superpixelCentroid;
Eigen::Matrix3f superpixelCovariance;
Eigen::Vector3f superpixelNormal;

pcl::compute3DCentroid(*pointCloud, indices, superpixelCentroid);
pcl::computeCovarianceMatrix(*pointCloud, indices, superpixelCentroid, superpixelCovariance);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> superpixelEigenValues(superpixelCovariance);



// Point-ness:
(*this->features)(label, cols) = superpixelEigenValues.eigenvalues()(0);
(*this->features)(label, cols + 1) = superpixelEigenValues.eigenvalues()(2) - superpixelEigenValues.eigenvalues()(1);
(*this->features)(label, cols + 2) = superpixelEigenValues.eigenvalues()(1) - superpixelEigenValues.eigenvalues()(0);
}

return Eigen::Vector2i(cols, cols + 2);
}

Eigen::Vector2i SuperpixelFeatures::addColorHistogram(int bins) {
assert(bins > 0 && bins < 10);

int histogramSize = std::pow(bins, 3);
int cols = this->features->cols();
this->features->resize(this->numberOfSuperpixels, cols + histogramSize);

int* normalization = new int[this->numberOfSuperpixels];
for (int label = 0; label < this->numberOfSuperpixels; ++label) {
normalization[label] = 0;

for (int k = 0; k < histogramSize; ++k) {
(*this->features)(label, cols + k) = 0;
}
}


int denominator = ceil(256./((double) bins));
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
int bin = this->image->at<cv::Vec3b>(i, j)[0]/denominator + bins*(this->image->at<cv::Vec3b>(i, j)[1]/denominator) + bins*bins*(this->image->at<cv::Vec3b>(i, j)[2]/denominator);
++(*this->features)(this->labels[i][j], cols + bin);
++normalization[this->labels[i][j]];
}
}

for (int label = 0; label < this->numberOfSuperpixels; ++label) {
for (int k = 0; k < histogramSize; ++k) {
(*this->features)(label, cols + k) /= normalization[label];
}
}

return Eigen::Vector2i(cols, cols + histogramSize);
}

Eigen::Vector2i SuperpixelFeatures::addGroundTruth(int** labels) {
int numberOfLabels = 0;
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
if (labels[i][j] > numberOfLabels) {
numberOfLabels = labels[i][j];
}
}
}

// Remember that zero may be a label as well.
numberOfLabels = numberOfLabels + 1;

Eigen::MatrixXi intersection(this->numberOfSuperpixels, numberOfLabels);
for (int i = 0; i < this->height; ++i) {
for (int j = 0; j < this->width; ++j) {
assert(this->labels[i][j] < this->numberOfSuperpixels);
assert(labels[i][j] < numberOfLabels);

++intersection(this->labels[i][j], labels[i][j]);
}
}

for (int label = 0; label < this->numberOfSuperpixels; ++label) {

int maxIntersection = 0;
int maxGTLabel = 0;
for (int gtLabel = 0; gtLabel < numberOfLabels; ++gtLabel) {
if (intersection(label, gtLabel) > maxIntersection) {
maxIntersection = intersection(label, gtLabel);
maxGTLabel = gtLabel;
}
}

(*this->features)(label, 0) = maxGTLabel;
}

return Eigen::Vector2i(0, 0);
}

int SuperpixelFeatures::getFeatureDimension() const {
return this->features->cols();
}

Eigen::MatrixXd* SuperpixelFeatures::getFeatures() const {
return this->features;
}

关于python - 计算图像片段(超像素)的特征向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37079738/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com