gpt4 book ai didi

python - 未安装错误: TfidfVectorizer - Vocabulary wasn't fitted

转载 作者:太空宇宙 更新时间:2023-11-03 20:58:40 25 4
gpt4 key购买 nike

我正在尝试使用 scikit-learn/pandas 构建一个情感分析器。构建和评估模型有效,但尝试对新样本文本进行分类却行不通。

我的代码:

import csv
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score

infile = 'Sentiment_Analysis_Dataset.csv'
data = "SentimentText"
labels = "Sentiment"


class Classifier():
def __init__(self):
self.train_set, self.test_set = self.load_data()
self.counts, self.test_counts = self.vectorize()
self.classifier = self.train_model()

def load_data(self):

df = pd.read_csv(infile, header=0, error_bad_lines=False)
train_set, test_set = train_test_split(df, test_size=.3)
return train_set, test_set

def train_model(self):
classifier = BernoulliNB()
targets = self.train_set[labels]
classifier.fit(self.counts, targets)
return classifier


def vectorize(self):

vectorizer = TfidfVectorizer(min_df=5,
max_df = 0.8,
sublinear_tf=True,
ngram_range = (1,2),
use_idf=True)
counts = vectorizer.fit_transform(self.train_set[data])
test_counts = vectorizer.transform(self.test_set[data])

return counts, test_counts

def evaluate(self):
test_counts,test_set = self.test_counts, self.test_set
predictions = self.classifier.predict(test_counts)
print (classification_report(test_set[labels], predictions))
print ("The accuracy score is {:.2%}".format(accuracy_score(test_set[labels], predictions)))


def classify(self, input):
input_text = input

input_vectorizer = TfidfVectorizer(min_df=5,
max_df = 0.8,
sublinear_tf=True,
ngram_range = (1,2),
use_idf=True)
input_counts = input_vectorizer.transform(input_text)
predictions = self.classifier.predict(input_counts)
print(predictions)

myModel = Classifier()

text = ['I like this I feel good about it', 'give me 5 dollars']

myModel.classify(text)
myModel.evaluate()

错误:

Traceback (most recent call last):
File "sentiment.py", line 74, in <module>
myModel.classify(text)
File "sentiment.py", line 66, in classify
input_counts = input_vectorizer.transform(input_text)
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 1380, in transform
X = super(TfidfVectorizer, self).transform(raw_documents)
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 890, in transform
self._check_vocabulary()
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/feature_extraction/text.py", line 278, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),
File "/home/rachel/Sentiment/ENV/lib/python3.5/site-packages/sklearn/utils/validation.py", line 690, in check_is_fitted
raise _NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.exceptions.NotFittedError: TfidfVectorizer - Vocabulary wasn't fitted.

我不确定问题是什么。在我的分类方法中,我创建了一个全新的矢量化器来处理我想要分类的文本,与用于从模型创建训练和测试数据的矢量化器分开。

谢谢

最佳答案

您已经安装了一个矢量化器,但您将其丢弃,因为它在您的 vectorize 函数的生命周期之后就不存在了。相反,在转换后将模型保存在 vectorize 中:

self._vectorizer = vectorizer

然后在您的 classify 函数中,不要创建新的向量化器。相反,请使用您适合训练数据的数据:

input_counts = self._vectorizer.transform(input_text)

关于python - 未安装错误: TfidfVectorizer - Vocabulary wasn't fitted,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55843922/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com