gpt4 book ai didi

opencv - solvePNP vs recoverPose 通过旋转组合 : why translations are not same?

转载 作者:太空宇宙 更新时间:2023-11-03 20:47:00 25 4
gpt4 key购买 nike


第 1 部分:更新前


我正在尝试使用两种不同的方法来估计相对位置:solvePNPrecoverPose ,似乎 R 矩阵在某些错误方面看起来没问题,但平移向量完全不同。我究竟做错了什么?通常,我需要使用这两种方法找到从第 1 帧到第 2 帧的相对位置。

    cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);

Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);

rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP1.inv() * (tvecPNP2 - tvecPNP1);

Mat E = findEssentialMat(corners1, corners2, cameraMatrix);

recoverPose(E, corners1, corners2, cameraMatrix, rvecRecover, tvecRecover);

输出:

solvePnP: R: 
[0.99998963, 0.0020884471, 0.0040569459;
-0.0020977913, 0.99999511, 0.0023003994;
-0.0040521105, -0.0023088832, 0.99998915]

solvePnP: t:
[0.0014444492; 0.00018377086; -0.00045027508]

recoverPose: R:
[0.9999900052294586, 0.0001464890570028249, 0.004468554816042664;
-0.0001480011106435358, 0.9999999319097322, 0.0003380476328946509;
-0.004468504991498534, -0.0003387056052618761, 0.9999899588204144]

recoverPose: t:
[0.1492094050828522; -0.007288328116585327; -0.9887787587261805]

第 2 部分:更新后


更新:我已经改变了 R-s 和 t-s 在 solvePnP 之后的组成方式:

    cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);

Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);

rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP2 * tvecPNP2 - rodriguesRPNP1 * tvecPNP1;

此构图已通过相机的实际移动进行检查,似乎是正确的。

此外,recoverPose 现在从非平面对象获取点,这些点处于一般位置。测试的运动也不是纯粹的旋转以避免退化情况,但平移向量仍然非常不同。

第一帧: First frame第一帧:跟踪和匹配绿点,可以在第二帧上看到(虽然在第二帧上它们是蓝色的): Green points are tracked and can be seen on the second frame (they are blue there though)第二帧: Second frame第二帧:recoverPose 的一般位置跟踪点: Tracked points in general position for recoverPose

    cv::solvePnP(constants::calibration::rig.rig3DPoints, corners1,
cameraMatrix, distortion, rvecPNP1, tvecPNP1);
cv::solvePnP(constants::calibration::rig.rig3DPoints, corners2,
cameraMatrix, distortion, rvecPNP2, tvecPNP2);

Mat rodriguesRPNP1, rodriguesRPNP2;
cv::Rodrigues(rvecPNP1, rodriguesRPNP1);
cv::Rodrigues(rvecPNP2, rodriguesRPNP2);

rvecPNP = rodriguesRPNP1.inv() * rodriguesRPNP2;
tvecPNP = rodriguesRPNP2 * tvecPNP2 - rodriguesRPNP1 * tvecPNP1;

CMT cmt;
// ...
// ... cmt module finds and tracks points here
// ...
std::vector<Point2f> coords1 = cmt.getPoints();
std::vector<int> classes1 = cmt.getClasses();

cmt.processFrame(imGray2);

std::vector<Point2f> coords2 = cmt.getPoints();
std::vector<int> classes2 = cmt.getClasses();

std::vector<Point2f> coords3, coords4;

// Make sure that points and their classes are in the same order
// and the vectors of the same size
utils::fuse(coords1, classes1, coords2, classes2, coords3, coords4,
constants::marker::randomPointsInMark);

Mat E = findEssentialMat(coords3, coords4, cameraMatrix, cv::RANSAC, 0.9999);

int numOfInliers = recoverPose(E, coords3, coords4, cameraMatrix,
rvecRecover, tvecRecover);

输出:

solvePnP: R:
[ 0.97944641, 0.072178222, 0.18834825;
-0.07216832, 0.99736851, -0.0069195116;
-0.18835205, -0.0068155089, 0.98207784]

solvePnP: t:
[-0.041602995; 0.014756925; 0.025671512]

recoverPose: R:
[0.8115000456601129, 0.03013366385237642, -0.5835748779689431;
0.05045522914264587, 0.9913266281414459, 0.1213498503908197;
0.5821700316452212, -0.1279198133228133, 0.80294120308629]

recoverPose: t:
[0.6927871089455181; -0.1254653960405977; 0.7101439685551703]

recoverPose: numOfInliers: 18

我也试过相机静止不动的情况(没有R,没有t),R-s 很接近但平移不是。那么我在这里缺少什么?

最佳答案

如果您使用单目相机系统来查找帧之间的相对位置,那么通过分解基本矩阵,您将无法获得现实世界中的绝对平移。请注意,您从 recoverPose() 获得的所有平移向量都是单位向量。 “通过分解 E,您只能获得平移的方向,因此函数返回单位 t。”,来自 decomposeEssentialMat() 的文档.

对于 solvePnP(),它使用世界坐标系的 3D 点。因此,从 solvePnP() 计算的平移应该是现实世界中的绝对值。对于旋转 R,两种方法都产生了正确的答案。

关于opencv - solvePNP vs recoverPose 通过旋转组合 : why translations are not same?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51914161/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com