- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我创建了一些代码来计算加权全局效率,但是,代码运行时间太长。我需要使代码更加高效,或者需要找到一种更有效的方法来计算大型数据集(最多 6000 个点)。
我已经编辑了很多代码,并且尝试了 igraph(没有加权全局效率的函数),但没有任何东西可以让它足够快地完成计算。我当前的代码全部显示在下面
import networkx as nx
import numpy as np
from networkx import algorithms
from networkx.algorithms import efficiency
from networkx.algorithms.efficiency import global_efficiency
from networkx.exception import NetworkXNoPath
import pandas as pd
from tqdm import tqdm
from itertools import permutations
import time
from multiprocessing import Pool, cpu_count
def efficiency_weighted(G, u, v, weight):
try:
eff = 1 / nx.shortest_path_length(G, u, v, weight='weight')
except NetworkXNoPath:
eff = 0
return eff
def global_efficiency_weighted(G):
n = len(G)
denom = n * (n - 1)
if denom != 0:
g_eff = sum(efficiency_weighted(G, u, v, weight='weight') for u, v in permutations(G, 2)) / denom
else:
g_eff = 0
return g_eff
data=pd.read_csv("lobe2 1.csv")
lol1 = data.values.tolist()
data=pd.read_csv("lobe2 2.csv")
lol2 = data.values.tolist()
data=pd.read_csv("lobe2 3.csv")
lol3 = data.values.tolist()
data=pd.read_csv("lobe2 4.csv")
lol4 = data.values.tolist()
data=pd.read_csv("lobe2 5.csv")
lol5 = data.values.tolist()
data=pd.read_csv("lobe2 6.csv")
lol6 = data.values.tolist()
combos=lol1+lol2+lol3+lol4 #lists to be used for deletion in the matrix
datasafe=pd.read_csv("b1.csv", index_col=0)
##uncommennt this section for sample benchmarking
#size = 25
#subset = [c[0] for c in combos[0:size]]
#datasafe = datasafe.loc[subset, :]
#datasafe = datasafe[subset]
#combos = combos[0:size]
################################
########## Single core
################################
tic = time.time()
GE_list=[]
for combo in tqdm(combos):
df_temp = datasafe.copy()
df_temp.loc[combo, :] = 0
df_temp[combo] = 0
g=nx.from_pandas_adjacency(df_temp)
ge=global_efficiency_weighted(g)
# ge=global_efficiency(g) #uncomment to test non-weighted
GE_list.append(ge)
toc = time.time()
single = toc-tic
print("results for single core")
print(GE_list)
################################
########## Multi core
################################
def multi_global(datasafe,combo):
df_temp = datasafe.copy()
df_temp.loc[combo, :] = 0
df_temp[combo] = 0
g=nx.from_pandas_adjacency(df_temp) #omptimise by zoring on adjacency
ge=global_efficiency_weighted(g)
return ge
tic = time.time()
cpu = cpu_count()-1
pool = Pool(processes=cpu)
results = [pool.apply(multi_global, args=(datasafe, combo)) for combo in tqdm(combos)]
pool.close()
pool.join()
pool.terminate()
toc = time.time()
multi = toc-tic
################################
########## Multi core async
################################
def multi_global_as(datasafe,combo):
df_temp = datasafe.copy()
df_temp.loc[combo, :] = 0
df_temp[combo] = 0
g=nx.from_pandas_adjacency(df_temp) #omptimise by zoring on adjacency
ge=global_efficiency_weighted(g)
pbar.update(1)
return combo,ge
tic = time.time()
cpu = cpu_count()-1
pool = Pool(processes=cpu)
pbar = tqdm(total=int(len(combos)/cpu))
results = [pool.apply_async(multi_global_as, args=(datasafe, combo)) for combo in combos]
res=[result.get() for result in results]
pool.close()
pool.join()
pool.terminate()
pbar.close()
toc = time.time()
multi_as = toc-tic
print("results for # cpu: " + str(cpu))
print(results)
print("time for single core: "+str(single))
print("time for multi core: "+str(multi))
print("time for multi async core: "+str(multi_as))
计算加权全局效率的结果是准确的,但是花费的时间太长。
最佳答案
当前,对于每对节点,您计算图中的最短路径。这是一个昂贵的计算。在计算一对节点的最短路径时,该算法做了很多对其他对有用的工作。不幸的是,这些信息被丢弃了,然后您继续处理下一对。
相反,请使用 all_pairs_dijkstra
这将找到所有对之间的最短路径。
具体来说,在您的调用 sum(efficiency_weighted(G, u, v, Weight='weight') for u, v in permutations(G, 2))
中,您将计算最短路径G 中每对节点的 u 到 v。这是低效的。
这应该可以完成相同的工作,而无需调用efficiency_weighted
:
def global_efficiency_weighted(G):
n = len(G)
denom = n * (n - 1)
if denom != 0:
shortest_paths = nx.all_pairs_dijkstra(G, weight = 'weight')
g_eff = sum(1./shortest_paths[u][0][v] if shortest_paths[u][0][v] !=0 else 0 for u, v in permutations(G, 2)) / denom
else:
g_eff = 0
return g_eff
关于python - 如何更有效地计算全局效率?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56554132/
第一个 .on 函数比第二个更有效吗? $( "div.container" ).on( "click", "p", function(){ }); $( "body" ).on( "click",
已关闭。此问题不符合Stack Overflow guidelines 。目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 已关闭 7 年前。 Improve
我有这样的查询: $('#tabContainer li'); JetBrains WebStorm IDE 将其突出显示为低效查询。它建议我改用这个: $('#tabContainer').find
我刚刚在 coursera ( https://www.coursera.org/saas/) 上听了一个讲座,教授说 Ruby 中的一切都是对象,每个方法调用都是在对象上调用发送方法,将一些参数传递
这可能是用户“不喜欢”的另一个问题,因为它更多的是与建议相关而不是与问题相关。 我有一个在保存和工作簿打开时触发的代码。 它在 f(白天与夜晚,日期与实际日期)中选择正确的工作表。 周一到周三我的情况
这只是我的好奇心,但是更有效的是递归还是循环? 给定两个功能(使用通用lisp): (defun factorial_recursion (x) (if (> x 0) (*
这可能是一个愚蠢的问题,但是while循环的效率与for循环的效率相比如何?我一直被教导,如果可以使用for循环,那我应该这样做。但是,实际上之间的区别是什么: $i = 0; while($i <
我有一个Elasticsearch索引,其中包含几百万条记录。 (基于时间戳的日志记录) 我需要首先显示最新记录(即,按时间戳降序排列的记录) 在时间戳上排序desc是否比使用时间戳的函数计分功能更有
使用Point2D而不是double x和y值时,效率有很大差异吗? 我正在开发一个程序,该程序有许多圆圈在屏幕上移动。他们各自从一个点出发,并越来越接近目的地(最后,他们停下来)。 使用 .getC
我正在编写一个游戏,并且有一个名为 GameObject 的抽象类和三个扩展它的类(Player、Wall 和 Enemy)。 我有一个定义为包含游戏中所有对象的列表。 List objects; 当
我是 Backbone 的初学者,想知道两者中哪一个更有效以及预期的做事方式。 A 型:创建一个新集合,接受先前操作的结果并从新集合中提取 key result = new Backbone.Coll
最近,关于使用 LIKE 和通配符搜索 MS SQL 数据库的最有效方法存在争论。我们正在使用 %abc%、%abc 和 abc% 进行比较。有人说过,术语末尾应该始终有通配符 (abc%)。因此,根
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想知道,这样做会更有效率吗: setVisible(false) // if the component is invisible 或者像这样: if(isVisible()){
我有一个静态方法可以打开到 SQL Server 的连接、写入日志消息并关闭连接。我在整个代码中多次调用此方法(平均每 2 秒一次)。 问题是 - 它有效率吗?我想也许积累一些日志并用一个连接插入它们
这个问题在这里已经有了答案: Best practice to avoid memory or performance issues related to binding a large numbe
我为我的 CS 课(高中四年级)制作了一个石头剪刀布游戏,我的老师给我的 shell 文件指出我必须将 do while 循环放入运行者中,但我不明白为什么?我的代码可以工作,但她说最好把它写在运行者
我正在编写一个需要通用列表的 Java 应用程序。该列表需要能够经常动态地调整大小,对此的明显答案是通用的Linkedlist。不幸的是,它还需要像通过调用索引添加/删除值一样频繁地获取/设置值。 A
我的 Mysql 语句遇到了真正的问题,我需要将几个表连接在一起,查询它们并按另一个表中值的平均值进行排序。这就是我所拥有的... SELECT ROUND(avg(re.rating
这个问题在这里已经有了答案: 关闭 10 年前。 Possible Duplicate: Is there a difference between i==0 and 0==i? 以下编码风格有什么
我是一名优秀的程序员,十分优秀!