gpt4 book ai didi

python - 如何绘制非数值数据的日期时间和 value_counts() ?

转载 作者:太空宇宙 更新时间:2023-11-03 20:46:27 25 4
gpt4 key购买 nike

我有以下列connect_start

0   2019-01-01 00:01:44
1 2019-01-01 00:02:57
2 2019-01-01 00:24:09
3 2019-01-01 01:35:23
4 2019-01-01 01:46:41

以及客户观看以访问互联网的一列 advertisement_id示例:

0 1
1 2
2 3
3 2
4 1

如何绘制这两列以根据月查看advertisement_idvalue_counts()?

我有以下代码:

df = pd.read_csv('./input/data.csv', sep=';')
df['connect_start'] = pd.to_datetime(df['connect_start'], format='%Y/%m/%d %H:%M:%S')

如何对月份进行分组并绘制advertisement_id.value()

这是我的尝试,我的计算机多次崩溃。任何人都可以帮忙。

df['connect_start'] = pd.to_datetime(df['connect_start'], format='%Y/%m/%d %H:%M:%S')

df.groupby('connect_start)['advertisement_id']

最佳答案

你真的很接近!

connect_start 列转换为日期时间后,您可以提取 ,如下所示:

df["my_date_column"].dt.day

然后,您可以像之前所做的那样使用 groupby 对数据进行分组

然后,您可以通过调用 sum 方法对每个组进行求和(doc) .

最后,您可以从DataFrame.plot.bar绘制它。 (doc)

这是一个工作示例:

# import modules
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(2019)

##############################################
# Just for example: create a random dataset #
##############################################

number_row = 10


def random_dates(start, end, n):
""" Generate n random dates between the interval """
start_u = pd.to_datetime(start).value//10**9
end_u = pd.to_datetime(end).value//10**9
return pd.to_datetime(np.random.randint(start_u, end_u, n), unit='s')

# create the dataframe
df = pd.DataFrame({"connect_start": random_dates("2019-01-01", "2019-12-31", number_row),
"advertisement_id": np.random.randint(0, 10, number_row)})

print(df)
# connect_start advertisement_id
# 0 2019-09-08 18: 34: 48 0
# 1 2019-11-05 06: 30: 10 0
# 2 2019-05-03 01: 32: 15 7
# 3 2019-01-13 06: 37: 25 8
# 4 2019-12-04 03: 47: 36 5
# 5 2019-11-23 14: 12: 14 3
# 6 2019-09-09 18: 39: 50 0
# 7 2019-10-01 08: 38: 53 2
# 8 2019-04-05 21: 37: 19 5
# 9 2019-04-25 04: 26: 52 7

##############################################
# Process #
##############################################

# Convert connect_start as datetime type
df["connect_start"] = pd.to_datetime(df.connect_start, format="%Y-%m-%d %H:%M:%S")

# Extract day of month, date, month in 3 new columns
df["day_in_month"] = df["connect_start"].dt.day
df["day_per_year"] = df['connect_start'].dt.date
df["month"] = df["connect_start"].dt.month

print(df)
# connect_start advertisement_id day_in_month day_per_year month
# 0 2019-09-08 18: 34: 48 0 8 2019-09-08 9
# 1 2019-11-05 06: 30: 10 0 5 2019-11-05 11
# 2 2019-05-03 01: 32: 15 7 3 2019-05-03 5
# 3 2019-01-13 06: 37: 25 8 13 2019-01-13 1
# 4 2019-12-04 03: 47: 36 5 4 2019-12-04 12
# 5 2019-11-23 14: 12: 14 3 23 2019-11-23 11
# 6 2019-09-09 18: 39: 50 0 9 2019-09-09 9
# 7 2019-10-01 08: 38: 53 2 1 2019-10-01 10
# 8 2019-04-05 21: 37: 19 5 5 2019-04-05 4
# 9 2019-04-25 04: 26: 52 7 25 2019-04-25 4


# Compute the number advertisement_id per group
df_day_in_month = df[["advertisement_id", "day_in_month"]].groupby(by="day_in_month").sum()
df_day_per_year = df[["advertisement_id", "day_per_year"]].groupby(by="day_per_year").sum()
df_month = df[["advertisement_id", "month"]].groupby(by="month").sum()

# Fulfill with 0 for all days off the month
df_day_in_month_all_days = df_day_in_month.reindex(np.arange(1, 32), fill_value=0)


#####################################
# Diplay #
#####################################
# Create figure
fig, axes = plt.subplots(nrows=2, ncols=2)

# Define subplots
df_day_in_month.plot.bar(ax=axes[0, 0], rot=0)
df_day_per_year.plot.bar(ax=axes[0, 1], rot=45)
df_day_in_month_all_days.plot.bar(ax=axes[1, 0], rot=0)
df_month.plot.bar(ax=axes[1, 1], rot=0)

# Prevent plot overlapping
plt.tight_layout()
plt.show()

输出: enter image description here

如果您有一些周期不完整的事项(取决于数据集的大小),您可以在没有值的地方人为添加0值。我为左下图编辑了它。

希望有帮助!

关于python - 如何绘制非数值数据的日期时间和 value_counts() ?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56557617/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com