- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
使用下面的代码我可以删除图像中的水平线。请参阅下面的结果。
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('image.png',0)
laplacian = cv2.Laplacian(img,cv2.CV_64F)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.show()
结果还不错,不完美但也不错。我想要实现的是 showed here .我正在使用 this code .
我的一个问题是:如何在不应用灰色效果的情况下保存 Sobel X
?原始但经过处理..
还有,有没有更好的方法呢?
编辑
源图像使用以下代码很好。效果很好。
import cv2
import numpy as np
img = cv2.imread("image.png")
img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img = cv2.bitwise_not(img)
th2 = cv2.adaptiveThreshold(img,255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,15,-2)
cv2.imshow("th2", th2)
cv2.imwrite("th2.jpg", th2)
cv2.waitKey(0)
cv2.destroyAllWindows()
horizontal = th2
vertical = th2
rows,cols = horizontal.shape
#inverse the image, so that lines are black for masking
horizontal_inv = cv2.bitwise_not(horizontal)
#perform bitwise_and to mask the lines with provided mask
masked_img = cv2.bitwise_and(img, img, mask=horizontal_inv)
#reverse the image back to normal
masked_img_inv = cv2.bitwise_not(masked_img)
cv2.imshow("masked img", masked_img_inv)
cv2.imwrite("result2.jpg", masked_img_inv)
cv2.waitKey(0)
cv2.destroyAllWindows()
horizontalsize = int(cols / 30)
horizontalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontalsize,1))
horizontal = cv2.erode(horizontal, horizontalStructure, (-1, -1))
horizontal = cv2.dilate(horizontal, horizontalStructure, (-1, -1))
cv2.imshow("horizontal", horizontal)
cv2.imwrite("horizontal.jpg", horizontal)
cv2.waitKey(0)
cv2.destroyAllWindows()
verticalsize = int(rows / 30)
verticalStructure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, verticalsize))
vertical = cv2.erode(vertical, verticalStructure, (-1, -1))
vertical = cv2.dilate(vertical, verticalStructure, (-1, -1))
cv2.imshow("vertical", vertical)
cv2.imwrite("vertical.jpg", vertical)
cv2.waitKey(0)
cv2.destroyAllWindows()
vertical = cv2.bitwise_not(vertical)
cv2.imshow("vertical_bitwise_not", vertical)
cv2.imwrite("vertical_bitwise_not.jpg", vertical)
cv2.waitKey(0)
cv2.destroyAllWindows()
#step1
edges = cv2.adaptiveThreshold(vertical,255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,3,-2)
cv2.imshow("edges", edges)
cv2.imwrite("edges.jpg", edges)
cv2.waitKey(0)
cv2.destroyAllWindows()
#step2
kernel = np.ones((2, 2), dtype = "uint8")
dilated = cv2.dilate(edges, kernel)
cv2.imshow("dilated", dilated)
cv2.imwrite("dilated.jpg", dilated)
cv2.waitKey(0)
cv2.destroyAllWindows()
# step3
smooth = vertical.copy()
#step 4
smooth = cv2.blur(smooth, (4,4))
cv2.imshow("smooth", smooth)
cv2.imwrite("smooth.jpg", smooth)
cv2.waitKey(0)
cv2.destroyAllWindows()
#step 5
(rows, cols) = np.where(img == 0)
vertical[rows, cols] = smooth[rows, cols]
cv2.imshow("vertical_final", vertical)
cv2.imwrite("vertical_final.jpg", vertical)
cv2.waitKey(0)
cv2.destroyAllWindows()
但是如果我有这张图片呢?
我尝试执行上面的代码,结果真的很差......
我正在处理的其他图像是这些...
最佳答案
获取二进制图像。 Load the image , 转换为 grayscale , 然后 Otsu's threshold获得二进制黑白图像。
检测并移除水平线。为了检测水平线,我们创建了一个特殊的 horizontal kernel和 morph open检测水平轮廓。我们从这里find contours在面具上和"fill in"检测到的水平轮廓为白色,有效去除线条
修复图像。 此时,如果水平线与字符相交,图像可能会出现间隙。为了修复文本,我们创建了一个垂直内核和 morph close扭转伤害
转为灰度后,我们用Otsu的阈值得到二值图像
image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
接下来我们创建一个特殊的水平内核来检测水平线。我们将这些线绘制到蒙版上,然后在蒙版上找到轮廓。为了去除线条,我们用白色填充轮廓
检测线
面具
填充轮廓
# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image, [c], -1, (255,255,255), 2)
图像目前有间隙。为了解决这个问题,我们构建了一个垂直内核来修复图像
# Repair image
repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,6))
result = 255 - cv2.morphologyEx(255 - image, cv2.MORPH_CLOSE, repair_kernel, iterations=1)
Note depending on the image, the size of the kernel will change. You can think of the kernel as
(horizontal, vertical)
. For instance, to detect longer lines, we could use a(50,1)
kernel instead. If we wanted thicker lines, we could increase the 2nd parameter to say(50,2)
.
这是其他图片的结果
检测线
原始 ->
已删除
检测线
原始 ->
已删除
完整代码
import cv2
image = cv2.imread('1.png')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
# Remove horizontal
horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25,1))
detected_lines = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, horizontal_kernel, iterations=2)
cnts = cv2.findContours(detected_lines, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
cv2.drawContours(image, [c], -1, (255,255,255), 2)
# Repair image
repair_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,6))
result = 255 - cv2.morphologyEx(255 - image, cv2.MORPH_CLOSE, repair_kernel, iterations=1)
cv2.imshow('thresh', thresh)
cv2.imshow('detected_lines', detected_lines)
cv2.imshow('image', image)
cv2.imshow('result', result)
cv2.waitKey()
关于python - 去除图像中的水平线(OpenCV、Python、Matplotlib),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46274961/
我无法在此图中定位轴标签。我喜欢放置顶部标签,使管道与网格对齐,并放置左右标签,以便它们不接触绘图。 我试过了 ax.tick_params(axis='both', which='both'
我使用的是 python 2,下面的代码只是使用了一些示例数据,我的实际数据可能有不同的长度,并且可能不是很细。 import numpy as np import datetime i
给定坐标 [1,5,7,3,5,10,3,6,8]为 matplotlib.pyplot ,如何突出显示或着色线条的不同部分。例如,列表中的坐标 1-3 ( [1,5,7,3] ) 表示属性 a .我
我正在matplotlib中绘制以下图像。 我的问题是,图像看起来像这样,但是,我想使背景变暗,因为当我打印该图像时,灰度部分不会出现在打印物中。有人可以告诉我API进行此更改吗? 我使用简单的API
这是关于matplotlib的一个非常基本的问题,但是我不知道该怎么做: 我想绘制多个图形,并使用绘制窗口中的箭头从一个移到另一个。 目前,我只知道如何创建多个图并将其绘制在不同的窗口中,如下所示:
在 matplotlib 中绘制小块对象时,由于显示分辨率而引入了伪影。使用抗锯齿并不能解决问题。 这个问题有解决方案吗? import matplotlib.pyplot as plt impo
对于直方图,有一个简单的内置选项 histtype='step' .如何制作相同风格的条形图? 最佳答案 [阅读评论后添加答案] 将可选关键字设置为 fill=False对于条形图: import m
我正在尝试在 (6X3) 网格上创建子图。我对图例的位置有疑问。图例对所有子图都是通用的。 lgend 现在与 y 轴标签重叠 我尝试删除 constrained_layout=True 选项。但这在
我有一个带有一些线段( LineCollection )和一些点的图表。这些线和点有一些与它们相关的值,但没有绘制出来。我希望能够添加鼠标悬停工具提示或其他方法来轻松找到点和线的关联值。这对于点或线段
我想创建一个带有对齐不同曲线文本的图例的图。这是一个最小的工作示例: import matplotlib.pyplot as plt import numpy as np x=np.linspace(
可以说我正在用matplotlib绘制一条线并添加一个图例。 在图例中,其显示为------ Label。当绘制较小的图形尺寸以进行打印时,我发现该行的默认水平长度太长。 是否存在将------ La
我正在使用 matplotlib 构建一个 3D 散点图,但无法使生成的图形具有所有 3 个轴的共同原点。我怎样才能做到这一点? 我的代码(到目前为止),我还没有为轴规范实现任何定义,因为我对 Pyt
我有一个我想使用的绘图布局,其中 9 个不同的数据簇被布置在一个方形网格上。网格中的每个框都包含 3 个并排布置的箱线图。 我最初的想法是这将适合 3x3 子图布局,每个单独的子图本身被划分为 3x1
我的图形从y=-1变为y=10 我想在任意位置写一小段文字,例如x=2000,y=5: ax.annotate('MgII', xy=(2000.0, 5.0), xycoords='data')
我想使用LateX格式来构建一个表达式,其中出现一些数字,但这些数字是用LateX表达式中的变量表示的。 实际的目标是在axes.annotate()方法中使用它,但是为了讨论起见,这里是一个原理代码
我需要比较两组的二维分布。 当我使用 matplotlib.pyplot.contourf并覆盖图,每个等高线图的背景颜色填充整个图空间。有没有办法让每个等高线图的最低等高线级别透明,以便更容易看到每
在R中,有一个locator函数,类似于Matlab的ginput,您可以用鼠标单击图形并选择任何x,y坐标。此外,还有一个名为identify(x,y)的函数,如果您给它绘制了一组绘制的点x,y,然
我想用matplotlib生成矢量图。我尽力了-但输出是光栅图像。这是我使用的: import matplotlib matplotlib.use('Agg') import matplotlib.p
我正在尝试使用 matplotlib 制作具有非常小的灰点的散点图。由于点密度的原因,点需要很小。问题是 scatter() 函数的标记似乎既有线条又有填充。当标记很小时,只有线条可见,而看不到填充,
我不太明白为什么我无法在指定的限制内创建水平和垂直线。我想用这个框绑定(bind)数据。然而,双方似乎并没有遵守我的指示。为什么是这样? # CREATING A BOUNDING BOX # BOT
我是一名优秀的程序员,十分优秀!