gpt4 book ai didi

python - 如何将 TensorFlow 对象检测标签和边界框导出为 CSV 文件?

转载 作者:太空宇宙 更新时间:2023-11-03 20:40:55 24 4
gpt4 key购买 nike

我正在研究一个对象检测模型来帮助检查。其中一项功能是,如果它发现输入视频中存在错误,则会发出通知并将数据导出到 CSV。我希望它导出错误的标签和边界框坐标,以及时间戳和帧计数(如果可能)。

我见过one answer关于将边界框导出到 CSV,但它还没有工作,并给了我错误

文件“C:\Users\Charles.averill\AppData\Local\Programs\Python\Python36\lib\site-packages\numpy\lib\npyio.py”,第 1377 行,在 savetxt 中
“预期是一维或二维数组,却得到了 %dD 数组” % X.ndim)
ValueError:需要 1D 或 2D 数组,却得到 3D 数组

我有它,以便视频进行注释,一旦完成,它会提示用户是否导出为CSV,所以我有另一种导出方法。这是我的代码:

def annotate(self):
if("annotated" in self.video_path):
messagebox.showinfo("Error", "You can't annotate an annotated video!")
elif(self.mode == "V" and not self.video_path is None):
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
time = datetime.datetime.now().strftime('%Y-%m-%d %H_%M_%S')
path = 'output/videos/annotated_' + time + '_output.mp4'
out = cv2.VideoWriter(path, fourcc, 20.0, (960, 540))
self.rewind()
NUM_CLASSES = 2
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(self.model_graph, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
lmap = label_map_util.load_labelmap(self.label_map)
categories = label_map_util.convert_label_map_to_categories(lmap, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph) as sess:
while not self.currentFrame is None:
image_np = self.get_just_frame()
if(image_np is None):
break
image_np_expanded = np.expand_dims(image_np, axis=0)

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

self.boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

self.scores = detection_graph.get_tensor_by_name('detection_scores:0')

classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')

(self.boxes, self.scores, classes, num_detections) = sess.run(
[self.boxes, self.scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})

vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(self.boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(self.scores),
category_index,
use_normalized_coordinates=True,
line_thickness=2)

# Display output
out.write(image_np)
self.video.release()
out.release()
self.video = None
self.set_video_path(path)
self.video = cv2.VideoCapture(self.video_path)
if(not self.video.isOpened()):
raise ValueError("Unable to open video source", self.video_path)
ret, frame = self.get_frame()
if(ret and not frame is None):
self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(frame))
self.canvas.create_image(0, 0, image = self.photo, anchor = NW)
MsgBox = tk.messagebox.askquestion ('Export to CSV','Do you want to export the video to CSV?',icon = 'warning')
if MsgBox == 'yes':
self.export_CSV()
if(self.video_path is None):
messagebox.showinfo("Error", "No video selected")

def export_CSV(self):
if(not self.boxes is None):
print(self.boxes)
for i, box in enumerate(np.squeeze(self.boxes)):
if(np.squeeze(self.scores)[i] > 0.5):
print("ymin={}, xmin={}, ymax={}, xmax{}".format(box[0]*540,box[1]*960,box[2]*540,box[3]*960))
time = datetime.datetime.now().strftime('%Y-%m-%d %H_%M_%S')
path = 'output/csv/' + time + '_output.csv'
np.savetxt(path, self.boxes, delimiter=',')
else:
messagebox.showinfo("Error", "No boxes, you must\nannotate the video first")

如何导出标签和边界框?

谢谢!

最佳答案

您需要将预测的类和类别传递给编写器方法,您也可以使用 csv 库来编写预测。

在文件开头添加:

import csv

我对您的代码做了一些更改,但您可以随意更正它。

def annotate(self):
if("annotated" in self.video_path):
messagebox.showinfo("Error", "You can't annotate an annotated video!")
elif(self.mode == "V" and not self.video_path is None):
fourcc = cv2.VideoWriter_fourcc(*'MP4V')
time = datetime.datetime.now().strftime('%Y-%m-%d %H_%M_%S')
path = 'output/videos/annotated_' + time + '_output.mp4'
out = cv2.VideoWriter(path, fourcc, 20.0, (960, 540))
self.rewind()
NUM_CLASSES = 2
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(self.model_graph, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
lmap = label_map_util.load_labelmap(self.label_map)
categories = label_map_util.convert_label_map_to_categories(lmap, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

with detection_graph.as_default():
with tf.compat.v1.Session(graph=detection_graph) as sess:
while not self.currentFrame is None:
image_np = self.get_just_frame()
if(image_np is None):
break
image_np_expanded = np.expand_dims(image_np, axis=0)

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

self.boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

self.scores = detection_graph.get_tensor_by_name('detection_scores:0')

classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')

(self.boxes, self.scores, classes, num_detections) = sess.run(
[self.boxes, self.scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})

vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(self.boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(self.scores),
category_index,
use_normalized_coordinates=True,
line_thickness=2)

# Display output
out.write(image_np)
self.video.release()
out.release()
self.video = None
self.set_video_path(path)
self.video = cv2.VideoCapture(self.video_path)
if(not self.video.isOpened()):
raise ValueError("Unable to open video source", self.video_path)
ret, frame = self.get_frame()
if(ret and not frame is None):
self.photo = PIL.ImageTk.PhotoImage(image = PIL.Image.fromarray(frame))
self.canvas.create_image(0, 0, image = self.photo, anchor = NW)
MsgBox = tk.messagebox.askquestion ('Export to CSV','Do you want to export the video to CSV?',icon = 'warning')
if MsgBox == 'yes':
self.export_CSV(self.boxes, self.scores, classes, category_index)
if(self.video_path is None):
messagebox.showinfo("Error", "No video selected")

def export_CSV(self, boxes, scores, classes, category_index):
if (boxes is None):
messagebox.showinfo("Error", "No boxes, you must\nannotate the video first")
return

time = datetime.datetime.now().strftime('%Y-%m-%d %H_%M_%S')
path = 'output/csv/' + time + '_output.csv'
print(boxes)

with open(path, 'wb') as write_file:
writer = csv.writer(write_file)

for box, score, predicted_class in zip(np.squeeze(boxes), np.squeeze(scores), classes):
if(score > 0.5):
print("ymin={}, xmin={}, ymax={}, xmax{}".format(box[0]*540,box[1]*960,box[2]*540,box[3]*960))
writer.writerow([box[0], box[1], box[2], box[3], category_index[predicted_class]['name']])

我不确定category_index是否有一个名为“name”的字段,但正如我所说,您可以根据需要随意更改:

writer.writerow([box[0], box[1], box[2], box[3], category_index[predicted_class]['name']])

关于python - 如何将 TensorFlow 对象检测标签和边界框导出为 CSV 文件?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56871251/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com