- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在研究对象检测。我知道检查模型计算 mAP
效果的标准,但我想更进一步。我想为每个类别生成一个分类报告。为此,我想计算 TP
、FP
和 FN
。我想避免这里出现循环并找到一种快速的方法来计算它。简而言之,步骤包括:
1) 丢弃所有置信度分数 < 0.6 的预测框2)用GT计算剩余框的IOU。这是矢量化
3) 对于 IOU >= 0.5 的所有框,检查相应的 predicted
和 ground-truth
标签。4) 更新TP
、FP
和FN
计数
这是一个例子:
Ground-Truth:
[[142. 208. 158. 346.] person,
[ 39. 63. 203. 112.] dog,
[ 49. 75. 203. 125.] person,
[ 31. 69. 201. 125.] dog,
[ 50. 72. 197. 121.] cat,
[ 35. 51. 196. 110.] dog]]
Predictions:
[[243. 203. 348. 279.] cat 0.7,
[ 54. 66. 198. 114.] person 0.5,
[ 42. 78. 186. 126.] person 0.5,
[ 18. 63. 235. 135.] person 0.5,
[ 54. 72. 198. 120.] person 0.5]
我以向量化
方式计算IOU并得到这个数组:
IOU:
array([[0. , 0. , 0. , 0. , 0. ],
[0. , 0.79577124, 0.48706725, 0.51433694, 0.62690467],
[0. , 0.6242775 , 0.787838 , 0.49283153, 0.79685193],
[0. , 0.65112543, 0.70033115, 0.609319 , 0.72605044],
[0. , 0.7406585 , 0.70739084, 0.4610215 , 0.94662803],
[0. , 0.6147791 , 0.39040923, 0.43102074, 0.48987743]],
dtype=float32)
鉴于这个 IOU 矩阵,现在我无法弄清楚如何以更快的方式匹配类标签。有人可以帮我吗?
最佳答案
如果我正确理解你的 IOU 指标输出(每行代表一个边界框预测,每列代表图像中每个对象的边界框)。
然后,您可以获得每一行的 IOU 指标最大化的列的索引:
indices = np.argmax(IOU, axis=1)
通过这些索引,可以访问您的ground-truth
标签。
关于python - 物体检测分类报告,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56886086/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!