gpt4 book ai didi

c++ - 没有新观察的Opencv卡尔曼滤波器预测

转载 作者:太空宇宙 更新时间:2023-11-03 20:39:22 26 4
gpt4 key购买 nike

我想使用 Opencv 卡尔曼滤波器实现来平滑一些噪声点。所以我尝试为它编写一个简单的测试。

假设我有一个观察结果(一个点)。我收到新观察的每一帧,我称卡尔曼预测和卡尔曼正确。 opencv Kalman filter正确后的状态是“following the point”,没问题。

那么假设我有一个缺失的观察结果,无论如何我都希望更新卡尔曼滤波器并预测新状态。这里我的代码失败了:如果我调用 kalman.predict() 值不再更新。

这是我的代码:

#include <iostream>
#include <vector>
#include <sys/time.h>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/tracking.hpp>

using namespace cv;
using namespace std;

//------------------------------------------------ convenience method for
// using kalman filter with
// Point objects
cv::KalmanFilter KF;
cv::Mat_<float> measurement(2,1);
Mat_<float> state(4, 1); // (x, y, Vx, Vy)

void initKalman(float x, float y)
{
// Instantate Kalman Filter with
// 4 dynamic parameters and 2 measurement parameters,
// where my measurement is: 2D location of object,
// and dynamic is: 2D location and 2D velocity.
KF.init(4, 2, 0);

measurement = Mat_<float>::zeros(2,1);
measurement.at<float>(0, 0) = x;
measurement.at<float>(0, 0) = y;


KF.statePre.setTo(0);
KF.statePre.at<float>(0, 0) = x;
KF.statePre.at<float>(1, 0) = y;

KF.statePost.setTo(0);
KF.statePost.at<float>(0, 0) = x;
KF.statePost.at<float>(1, 0) = y;

setIdentity(KF.transitionMatrix);
setIdentity(KF.measurementMatrix);
setIdentity(KF.processNoiseCov, Scalar::all(.005)); //adjust this for faster convergence - but higher noise
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
setIdentity(KF.errorCovPost, Scalar::all(.1));
}

Point kalmanPredict()
{
Mat prediction = KF.predict();
Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
return predictPt;
}

Point kalmanCorrect(float x, float y)
{
measurement(0) = x;
measurement(1) = y;
Mat estimated = KF.correct(measurement);
Point statePt(estimated.at<float>(0),estimated.at<float>(1));
return statePt;
}

//------------------------------------------------ main

int main (int argc, char * const argv[])
{
Point s, p;

initKalman(0, 0);

p = kalmanPredict();
cout << "kalman prediction: " << p.x << " " << p.y << endl;
/*
* output is: kalman prediction: 0 0
*
* note 1:
* ok, the initial value, not yet new observations
*/

s = kalmanCorrect(10, 10);
cout << "kalman corrected state: " << s.x << " " << s.y << endl;
/*
* output is: kalman corrected state: 5 5
*
* note 2:
* ok, kalman filter is smoothing the noisy observation and
* slowly "following the point"
* .. how faster the kalman filter follow the point is
* processNoiseCov parameter
*/

p = kalmanPredict();
cout << "kalman prediction: " << p.x << " " << p.y << endl;
/*
* output is: kalman prediction: 5 5
*
* note 3:
* mhmmm, same as the last correction, probabilly there are so few data that
* the filter is not predicting anything..
*/

s = kalmanCorrect(20, 20);
cout << "kalman corrected state: " << s.x << " " << s.y << endl;
/*
* output is: kalman corrected state: 10 10
*
* note 3:
* ok, same as note 2
*/

p = kalmanPredict();
cout << "kalman prediction: " << p.x << " " << p.y << endl;
s = kalmanCorrect(30, 30);
cout << "kalman corrected state: " << s.x << " " << s.y << endl;
/*
* output is: kalman prediction: 10 10
* kalman corrected state: 16 16
*
* note 4:
* ok, same as note 2 and 3
*/


/*
* now let's say I don't received observation for few frames,
* I want anyway to update the kalman filter to predict
* the future states of my system
*
*/
for(int i=0; i<5; i++) {
p = kalmanPredict();
cout << "kalman prediction: " << p.x << " " << p.y << endl;
}
/*
* output is: kalman prediction: 16 16
* kalman prediction: 16 16
* kalman prediction: 16 16
* kalman prediction: 16 16
* kalman prediction: 16 16
*
* !!! kalman filter is still on 16, 16..
* no future prediction here..
* I'm exprecting the point to go further..
* why???
*
*/

return 0;
}

我认为这段代码很好地说明了我不理解的地方。我试着关注 some theory还有一些practical example但仍然不知道如何获得对 future 位置的新预测..

任何人都可以帮助我理解我做错了什么?

最佳答案

致那些在使用 OpenCV 卡尔曼滤波时仍有问题的人

上面发布的代码经过小的修改后运行良好。您可以按如下方式设置,而不是将转换矩阵设置为 Identity。

修改

KF.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0,   0,1,0,1,  0,0,1,0,  0,0,0,1);  

输出

enter image description here

关于c++ - 没有新观察的Opencv卡尔曼滤波器预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18403918/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com