- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
什么是支点?
我如何枢纽?
这是支点吗?
长格式到宽格式?
我已经看到很多有关数据透视表的问题。即使他们不知道他们在询问数据透视表,通常也是如此。几乎不可能写出涵盖枢纽各个方面的规范问答。
...但是我要去尝试一下。
现有问题和答案的问题在于,问题通常集中在OP难以推广的细微差别上,以便使用许多现有的良好答案。但是,没有一个答案试图给出全面的解释(因为这是一项艰巨的任务)
从我的google search看一些例子
How to pivot a dataframe in Pandas?
好问题和答案。但是答案只回答了很少的具体问题。
pandas pivot table to data frame
在此问题中,OP与枢轴的输出有关。即列的外观。 OP希望它看起来像R。这对熊猫用户不是很有帮助。
pandas pivoting a dataframe, duplicate rows
另一个不错的问题,但答案集中在一种方法上,即pd.DataFrame.pivot
因此,每当有人搜索pivot
时,他们都会得到零星的结果,可能无法回答他们的特定问题。
设定
您可能会注意到,我显眼地命名了我的列和相关的列值,以与我将在以下答案中介绍的方式相对应。
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
ValueError: Index contains duplicate entries, cannot reshape
df
以使
col
值是列,
row
值是索引,而
val0
的均值是值?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 NaN 0.860 0.65
row2 0.13 NaN 0.395 0.500 0.25
row3 NaN 0.310 NaN 0.545 NaN
row4 NaN 0.100 0.395 0.760 0.24
df
以使
col
值是列,
row
值是索引,
val0
的均值是值,而缺少的值是
0
?
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
mean
以外的其他东西,例如
sum
吗?
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
sum mean
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02
row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79
row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00
row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65
row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00
row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
key row
key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00
row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00
row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00
key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65
row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13
row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00
row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00
row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
np.random.seed([3, 1415])
df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)})
df2
A B
0 a 0
1 a 11
2 a 2
3 a 11
4 b 10
5 b 10
6 b 14
7 c 7
a b c
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
pivot
后如何将多重索引展平为单个索引
1 2
1 1 2
a 2 1 1
b 2 1 0
c 1 0 0
1|1 2|1 2|2
a 2 1 1
b 2 1 0
c 1 0 0
最佳答案
我们首先回答第一个问题:
问题1
为什么我得到ValueError: Index contains duplicate entries, cannot reshape
发生这种情况是因为pandas试图为具有重复条目的columns
或index
对象重新编制索引。有多种方法可以执行数据透视。当有人要求重复输入密钥时,其中某些方法不太适合。例如。考虑pd.DataFrame.pivot
。我知道有重复的条目共享row
和col
值:
df.duplicated(['row', 'col']).any()
True
pivot
使用
df.pivot(index='row', columns='col', values='val0')
df.set_index(['row', 'col'])['val0'].unstack()
pd.DataFrame.groupby
+
pd.DataFrame.unstack
unstack
您想要的级别。
pd.DataFrame.pivot_table
groupby
的美化版本,具有更直观的API。对于许多人来说,这是首选方法。并且是开发人员的预期方法。
pd.DataFrame.set_index
+
pd.DataFrame.unstack
groupby
范例类似,我们指定最终将成为行或列级别的所有列,并将其设置为索引。然后,我们在各列中
unstack
所需的级别。如果其余索引级别或列级别都不唯一,则此方法将失败。
pd.DataFrame.pivot
set_index
非常相似,因为它共享重复的密钥限制。该API也非常有限。它仅采用
index
,
columns
,
values
的标量值。
pivot_table
方法类似,我们选择要在其上旋转的行,列和值。但是,我们无法聚合,并且如果行或列都不唯一,则此方法将失败。
pd.crosstab
pivot_table
的专用版本,它的最纯粹形式是执行多个任务的最直观的方法。
pd.factorize
+
np.bincount
pd.get_dummies
+
pd.DataFrame.dot
pd.DataFrame.pivot_table
进行回答。然后,我将提供替代方法来执行相同的任务。
df
以使
col
值是列,
row
值是索引,
val0
的均值是值,而缺少的值是
0
?
pd.DataFrame.pivot_table
fill_value
。我倾向于适当地设置它。在这种情况下,我将其设置为
0
。请注意,我跳过了问题2,因为它与没有
fill_value
的此答案相同
aggfunc='mean'
是默认设置,我无需设置。我将其包括在内是为了明确。
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc='mean')
col col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65
row2 0.13 0.000 0.395 0.500 0.25
row3 0.00 0.310 0.000 0.545 0.00
row4 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].mean().unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc='mean').fillna(0)
mean
以外的其他东西,例如
sum
吗?
pd.DataFrame.pivot_table
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc='sum')
col col0 col1 col2 col3 col4
row
row0 0.77 1.21 0.00 0.86 0.65
row2 0.13 0.00 0.79 0.50 0.50
row3 0.00 0.31 0.00 1.09 0.00
row4 0.00 0.10 0.79 1.52 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].sum().unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc='sum').fillna(0)
pivot_table
和
crosstab
,我需要传递可调用列表。另一方面,
groupby.agg
能够为有限数量的特殊功能使用字符串。
groupby.agg
也将采用我们传递给其他对象的相同可调用对象,但是利用字符串函数名称通常会更有效,因为可以提高效率。
pd.DataFrame.pivot_table
df.pivot_table(
values='val0', index='row', columns='col',
fill_value=0, aggfunc=[np.size, np.mean])
size mean
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 1 2 0 1 1 0.77 0.605 0.000 0.860 0.65
row2 1 0 2 1 2 0.13 0.000 0.395 0.500 0.25
row3 0 1 0 2 0 0.00 0.310 0.000 0.545 0.00
row4 0 1 2 2 1 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].agg(['size', 'mean']).unstack(fill_value=0)
pd.crosstab
pd.crosstab(
index=df['row'], columns=df['col'],
values=df['val0'], aggfunc=[np.size, np.mean]).fillna(0, downcast='infer')
pd.DataFrame.pivot_table
我们通过了
values=['val0', 'val1']
,但我们可以完全忽略它
df.pivot_table(
values=['val0', 'val1'], index='row', columns='col',
fill_value=0, aggfunc='mean')
val0 val1
col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
row
row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02
row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79
row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00
row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0', 'val1'].mean().unstack(fill_value=0)
pd.DataFrame.pivot_table
df.pivot_table(
values='val0', index='row', columns=['item', 'col'],
fill_value=0, aggfunc='mean')
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
row
row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65
row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00
row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
pd.DataFrame.groupby
df.groupby(
['row', 'item', 'col']
)['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
pd.DataFrame.pivot_table
df.pivot_table(
values='val0', index=['key', 'row'], columns=['item', 'col'],
fill_value=0, aggfunc='mean')
item item0 item1 item2
col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
key row
key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00
row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00
row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00
key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65
row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13
row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00
row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00
row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00
row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
pd.DataFrame.groupby
df.groupby(
['key', 'row', 'item', 'col']
)['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
pd.DataFrame.set_index
因为键集对于行和列都是唯一的
df.set_index(
['key', 'row', 'item', 'col']
)['val0'].unstack(['item', 'col']).fillna(0).sort_index(1)
pd.DataFrame.pivot_table
df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
col col0 col1 col2 col3 col4
row
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
pd.DataFrame.groupby
df.groupby(['row', 'col'])['val0'].size().unstack(fill_value=0)
pd.crosstab
pd.crosstab(df['row'], df['col'])
pd.factorize
+
np.bincount
# get integer factorization `i` and unique values `r`
# for column `'row'`
i, r = pd.factorize(df['row'].values)
# get integer factorization `j` and unique values `c`
# for column `'col'`
j, c = pd.factorize(df['col'].values)
# `n` will be the number of rows
# `m` will be the number of columns
n, m = r.size, c.size
# `i * m + j` is a clever way of counting the
# factorization bins assuming a flat array of length
# `n * m`. Which is why we subsequently reshape as `(n, m)`
b = np.bincount(i * m + j, minlength=n * m).reshape(n, m)
# BTW, whenever I read this, I think 'Bean, Rice, and Cheese'
pd.DataFrame(b, r, c)
col3 col2 col0 col1 col4
row3 2 0 0 1 0
row2 1 2 1 0 2
row0 1 0 1 2 1
row4 2 2 0 1 1
pd.get_dummies
pd.get_dummies(df['row']).T.dot(pd.get_dummies(df['col']))
col0 col1 col2 col3 col4
row0 1 2 0 1 1
row2 1 0 2 1 2
row3 0 1 0 2 0
row4 0 1 2 2 1
GroupBy.cumcount
完成此操作:
df2.insert(0, 'count', df.groupby('A').cumcount())
df2
count A B
0 0 a 0
1 1 a 11
2 2 a 2
3 3 a 11
4 0 b 10
5 1 b 10
6 2 b 14
7 0 c 7
DataFrame.pivot
。
df2.pivot(*df)
# df.pivot(index='count', columns='A', values='B')
A a b c
count
0 0.0 10.0 7.0
1 11.0 10.0 NaN
2 2.0 14.0 NaN
3 11.0 NaN NaN
pivot
后如何将多重索引展平为单个索引
columns
用字符串
object
键入
join
df.columns = df.columns.map('|'.join)
format
df.columns = df.columns.map('{0[0]}|{0[1]}'.format)
关于python - 如何旋转数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57202248/
...沮丧。我希望我的游戏仅在横向模式下运行。我已将适当的键/值添加到 Info.plist 文件中,以强制设备方向在启动时正确。 我现在正在尝试旋转 OpenGL 坐标空间以匹配设备的坐标空间。我正
我如何创建一个旋转矩阵,将 X 旋转 a,Y 旋转 b,Z 旋转 c? 我需要公式,除非您使用的是 ardor3d api 的函数/方法。 矩阵是这样设置的 xx, xy, xz, yx, yy, y
假设我有一个包含 3 个 vector 的类(一个用于位置,一个用于缩放,一个用于旋转)我可以使用它们生成一个变换矩阵,该矩阵表示对象在 3D 空间中的位置、旋转和大小。然后我添加对象之间的父/子关系
所以我只是在玩一个小的 javascript 游戏,构建一个 pacman 游戏。你可以在这里看到它:http://codepen.io/acha5066/pen/rOyaPW 不过我对旋转有疑问。你
在我的应用程序中,我有一个 MKMapView,其中显示了多个注释。 map 根据设备的航向旋转。要旋转 map ,请执行以下语句(由方法 locationManager 调用:didUpdateHe
使用此 jquery 插件时:http://code.google.com/p/jqueryrotate/wiki/Documentation我将图像旋转 90 度,无论哪个方向,它们最终都会变得模糊
我有以下代码:CSS: .wrapper { margin:80px auto; width:300px; border:none; } .square { widt
本篇介绍Manim中的两个旋转类的动画,名称差不多,分别是Rotate和Rotating。 Rotate类主要用于对图形对象进行指定角度、围绕特定点的精确旋转,适用于几何图形演示、物理模拟和机械运动
我只想通过小部件的轴移动图像并围绕小部件的中心旋转(就像任何数字绘画软件中的 Canvas ),但它围绕其左顶点旋转...... QPainter p(this); QTransform trans;
我需要先旋转图像,然后再将其加载到 Canvas 中。据我所知,我无法使用 canvas.rotate() 旋转它,因为它会旋转整个场景。 有没有好的JS方法来旋转图片? [不依赖于浏览器的方式] 最
我需要知道我的 Android 设备屏幕何时从一个横向旋转到另一个横向(rotation_90 到 rotation_270)。在我的 Android 服务中,我重新实现了 onConfigurati
**摘要:**本篇文章主要讲解Python调用OpenCV实现图像位移操作、旋转和翻转效果,包括四部分知识:图像缩放、图像旋转、图像翻转、图像平移。 本文分享自华为云社区《[Python图像处理] 六
我只是在玩MTKView中的模板设置;并且,我一直在尝试了解以下内容: 相机的默认位置。 使用MDLMesh和MTKMesh创建基元时的默认位置。 为什么轮换还涉及翻译。 相关代码: matrix_f
我正在尝试使用包 dendexend 创建一个树状图。它创建了非常好的 gg 树状图,但不幸的是,当你把它变成一个“圆圈”时,标签跟不上。我将在下面提供一个示例。 我的距离对象在这里:http://s
我想将一个完整的 ggplot 对象旋转 90°。 我不想使用 coord_flip因为这似乎会干扰 scale="free"和 space="free"使用刻面时。 例如: qplot(as.fac
我目前可以通过首先平移到轴心点然后执行旋转最后平移回原点来围绕轴心点旋转。在我的例子中,我很容易为肩膀做到这一点。但是,我不知道如何为前臂添加绕肘部的旋转。 我已经尝试了以下围绕肘部旋转的前臂: 平移
我想使用此功能旋转然后停止在特定点或角度。现在该元素只是旋转而不停止。代码如下: $(function() { var $elie = $("#bkgimg");
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 4 年前。 Improve this ques
我正在尝试创建一个非常简单的关键帧动画,其中图形通过给定的中点从一个角度旋转到另一个角度。 (目的是能够通过大于 180 度的 OBTUSE 弧角来制作旋转动画,而不是让动画“作弊”并走最短路线,即通
我需要旋转 NSView 实例的框架,使其宽度变为其高度,其高度变为其宽度。该 View 包含一个字符串,并且该字符串也被旋转,这一点很重要。 我查看了 NSView 的 setFrameRotati
我是一名优秀的程序员,十分优秀!