gpt4 book ai didi

python - 求解多个线性稀疏矩阵方程 : "numpy.linalg.solve" vs. "scipy.sparse.linalg.spsolve"

转载 作者:太空宇宙 更新时间:2023-11-03 20:31:22 25 4
gpt4 key购买 nike

我必须求解 x 的大量“Ax=B”类型的线性矩阵方程,其中 A 是一个稀疏矩阵,主要填充主对角线,B 是一个向量。

我的第一种方法是通过 numpy.linalg.solve 使用密集的 numpy 数组来实现此目的,并且它可以很好地处理 (N,n,n) 维数组,其中 N 是线性矩阵方程的数量,n 是方阵维数。我首先将它与迭代所有方程的 for 循环一起使用,这实际上相当慢。但后来意识到您也可以将 (N,n,n) 维矩阵直接传递给 numpy.linalg.solve ,而无需任何 for 循环(顺便说一下,我在阅读的文档中没有找到)。这已经大大提高了计算速度(详细信息见下文)。

但是,因为我有稀疏矩阵,所以我还查看了 scipy.sparse.linalg.spsolve 函数,它与相应的 numpy 函数执行类似的操作。使用 for 循环迭代所有方程比 numpy 解决方案快得多,但似乎不可能将 (N,n,n) 维数组直接传递给 scipy 的 spsolve。

这是我迄今为止尝试过的:

首先,我计算一些虚构的 A 矩阵和带有随机数的 B 向量以用于测试目的,包括稀疏矩阵和稠密矩阵:

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve

number_of_systems = 100 #corresponds to N in the text
number_of_data_points = 1000 #corresponds to n in the text

#calculation of sample matrices (dense and sparse)
A_sparse = np.empty(number_of_systems,dtype=object)
A_dense = np.empty((number_of_systems,number_of_data_points,number_of_data_points))

for ii in np.arange(number_of_systems):
A_sparse[ii] = sparse.spdiags(np.random.random(number_of_data_points),0,number_of_data_points,number_of_data_points)
A_dense[ii] = A_sparse[ii].todense()

#calculation of sample vectors
B = np.random.random((number_of_systems,number_of_data_points))

1)第一种方法:带有 for 循环的 numpy.linalg.solve:

def solve_dense_3D(A,B):
results = np.empty((A.shape[0],A.shape[1]))
for ii in np.arange(A.shape[0]):
results[ii] = np.linalg.solve(A[ii],B[ii])
return results

result_dense_for = solve_dense_3D(A_dense,B)

时间:

timeit(solve_dense_3D(A_dense,B))
1.25 s ± 27.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

2) 第二种方法:将 (N,n,n) 维矩阵直接传递给 numpy.linalg.solve:

result_dense = np.linalg.solve(A_dense,B)

时间:

timeit(np.linalg.solve(A_dense,B))
769 ms ± 9.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

3)第三种方法:使用 scipy.sparse.linalg.spsolve 和 for 循环:

def solve_sparse_3D(A,B):
results = np.empty((A.shape[0],A[0].shape[0]))
for ii in np.arange(A.shape[0]):
results[ii] = spsolve(A[ii],B[ii])
return results

result_sparse_for = solve_sparse_3D(A_sparse,B)

时间:

timeit(solve_sparse_3D(A_sparse,B))
30.9 ms ± 132 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

很明显,能够省略方法 1 和 2 中的 for 循环是有好处的。正如可能预期的那样,迄今为止最快的替代方案是使用稀疏矩阵的方法 3。

因为这个例子中的方程数量对我来说仍然相当少,而且因为我必须经常做类似的事情,所以如果有一个使用 scipy 稀疏矩阵而不使用 for 循环的解决方案,我会很高兴。有人知道实现这一目标的方法吗?或者也许有另一种方法以甚至不同的方式解决问题?我很乐意提供建议。

最佳答案

一个小演示,概述了我上面评论中的想法:

""" YOUR CODE (only imports changed + deterministic randomness) """

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve
from scipy.sparse import block_diag
from time import perf_counter as pc

np.random.seed(0)

number_of_systems = 100 #corresponds to N in the text
number_of_data_points = 1000 #corresponds to n in the text

#calculation of sample matrices (dense and sparse)
A_sparse = np.empty(number_of_systems,dtype=object)
A_dense = np.empty((number_of_systems,number_of_data_points,number_of_data_points))

for ii in np.arange(number_of_systems):
A_sparse[ii] = sparse.spdiags(np.random.random(number_of_data_points),0,number_of_data_points,number_of_data_points)
A_dense[ii] = A_sparse[ii].todense()

#calculation of sample vectors
B = np.random.random((number_of_systems,number_of_data_points))

def solve_sparse_3D(A,B):
results = np.empty((A.shape[0],A[0].shape[0]))
for ii in np.arange(A.shape[0]):
results[ii] = spsolve(A[ii],B[ii])
return results

start = pc()
result_sparse_for = solve_sparse_3D(A_sparse,B)
end = pc()
print(result_sparse_for)
print(end - start)

""" ALTERNATIVE APPROACH """

def solve_sparse_3D_blockdiag(A,B):
oldN = B.shape[0]

A_ = block_diag(A) # huge sparse block-matrix of independent problems
B_ = B.ravel() # flattened vector

results = spsolve(A_, B_)
return results.reshape(oldN, -1) # unflatten results

start = pc()
result_sparse_for = solve_sparse_3D_blockdiag(A_sparse,B)
end = pc()
print(result_sparse_for)
print(end - start)

输出

[[ 0.97529866  1.26406276  0.83348888 ...  0.99310639  3.90781207
0.16724226]
[ 1.23398934 28.82088739 1.6955886 ... 1.85011686 0.23386882
1.17208753]
[ 0.92864777 0.22248781 0.09445412 ... 2.5080376 0.91701228
0.97266564]
...
[ 0.33087093 0.89034736 1.7523883 ... 0.2171746 4.89236164
0.31546549]
[ 1.2163625 3.0100941 0.87216264 ... 1.62105596 0.33211353
2.07929302]
[ 5.35677404 1.23830776 0.16073721 ... 0.26492506 0.53676822
3.73192617]]
0.08764066299999995

###

[[ 0.97529866 1.26406276 0.83348888 ... 0.99310639 3.90781207
0.16724226]
[ 1.23398934 28.82088739 1.6955886 ... 1.85011686 0.23386882
1.17208753]
[ 0.92864777 0.22248781 0.09445412 ... 2.5080376 0.91701228
0.97266564]
...
[ 0.33087093 0.89034736 1.7523883 ... 0.2171746 4.89236164
0.31546549]
[ 1.2163625 3.0100941 0.87216264 ... 1.62105596 0.33211353
2.07929302]
[ 5.35677404 1.23830776 0.16073721 ... 0.26492506 0.53676822
3.73192617]]
0.07241856000000013

有一些事情要做:

  • 使用您原来的更理智的基准测试方法
  • 以正确的稀疏格式构建 block_diag,以消除一些潜在的警告和减速:请参阅文档
  • 调整 spsolve 的参数 permc_spec

关于python - 求解多个线性稀疏矩阵方程 : "numpy.linalg.solve" vs. "scipy.sparse.linalg.spsolve",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57484892/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com