我在 MATLAB 中有一个 for 循环,它计算正弦函数的和如下:
% preliminary constants, etc.
tTot = 2;
fS = 10000;dt = 1/fS; % total time, sampling rate
Npts = tTot * fS; %number of points
t = dt:dt:tTot;
c1 = 2*pi/tTot;
c2 = pi/fS;
s = zeros(1,Npts)
% loop to optimize:
for(k=1:Npts/2)
s = s + sin(c1*k*t - c2*k*(k-1))
end
基本上,随着 Npts
变大,一个单行 for 循环变得非常慢。困难在于我要对由参数 k
定义的向量求和,超过 k
。
有没有办法通过向量化来提高效率?到目前为止,我采用的一种方法是定义一个矩阵并对结果求和,但这会给我一个较大向量的内存不足错误:
[K,T] = meshgrid(1:1:Npts,t);
s = sum(sin(c1*K.*T - c2*K.*(K-1)),2);
方法 #1
使用正弦差值公式:sin(A-B) = sin A cos B - cos A sin B
这使我们能够利用 fast matrix multiplication
-
K = 1:Npts/2;
p1 = bsxfun(@times,c1*K(:),t(:).');
p2 = c2*K(:).*(K(:)-1);
s = cos(p2).'*sin(p1) - sin(p2).'*cos(p1);
方法 #2
与 bsxfun
-
K = 1:Npts/2;
p1 = bsxfun(@times,c1*K(:),t(:).');
p2 = c2*K(:).*(K(:)-1);
s = sum(sin(bsxfun(@minus, p1,p2)),1);
可以修改方法 #1 以引入更小的循环,以适应具有大数据数组的问题,如下所示 -
num_blks = 100;%// Edit this based on how much RAM can handle workspace data
intv_len = Npts/(2*num_blks); %// Interval length based on number of blocks
KP = 1:Npts/2;
P2 = c2*KP(:).*(KP(:)-1);
sin_P2 = sin(P2);
cos_P2 = cos(P2);
s = zeros(1,Npts);
for iter = 1:intv_len:Npts/2
K = iter:iter+intv_len-1;
p1 = bsxfun(@times,c1*K(:),t(:).');
s = s + (cos_P2(K).'*sin(p1) - sin_P2(K).'*cos(p1));
end
我是一名优秀的程序员,十分优秀!