- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
以下代码将根据索引更新库存商品数量。包含旧库存的表 dr 包含 >1000 个值。更新后的数据框 grp1 包含已售商品的数量。我想从数据帧 dr 中减去数据帧 grp1 并更新 dr。一切都很好,直到我想用 Panda 的 join 和 fillna 将 grp1 加入到 dr 中。首先,将数据类型从 int 更改为 float,不仅将 NaN 值,而且将 notnull 值替换为 0。这是索引不匹配的问题吗?
我试图使数据类型统一,但这并没有改变任何东西。在连接两个数据帧时删除 fillna 会为所有列返回 NaN。
dr has the following format (example):
druck_pseudonym lager_nr menge_im_lager
80009359 62808 1
80009360 62809 10
80009095 62810 0
80009364 62811 11
80009365 62812 10
80008572 62814 10
80009072 62816 18
80009064 62817 13
80009061 62818 2
80008725 62819 3
80008940 62820 12
dr.dtypes
lager_nr int64
menge_im_lager int64
dtype: object
and grp1 (example):
LagerArtikelNummer1 ArtMengen1
880211066 1
80211070 1
80211072 2
80211073 2
80211082 2
80211087 4
80211091 1
80211107 2
88889272 1
88889396 1
ArtMengen1 int64
dtype: object
#update list with "nicht_erledigt"
dr_update = dr.join(grp1).fillna(0)
dr_update["menge_im_lager"] = dr_update["menge_im_lager"] - dr_update["ArtMengen1"]
这将返回:
lager_nr menge_im_lager ArtMengen1
druck_pseudonym
80009185 44402 26.0 0.0
80009184 44403 2.0 0.0
80009182 44405 16.0 0.0
80008894 44406 32.0 0.0
80008115 44407 3.0 0.0
80008974 44409 16.0 0.0
80008380 44411 4.0 0.0
dr_update.dtypes
lager_nr int64
menge_im_lager float64
ArtMengen1 float64
dtype: object
最佳答案
您的索引是字符串对象。您需要将它们转换为数字。使用
dr.index = pd.to_numeric(dr.index)
grp1.index = pd.to_numeric(grp1.index)
dr.sort_index()
grp1.sort_index()
然后尝试剩下的...
您可以过滤旧库存“dr”数据框以匹配已售库存,然后减去并返回到原始过滤后的数据框。
# Filter the old stock dataframe so that you have matching index to the sold dataframe.
# Restrict just for menge_im_lager. Then subtract the sold stock
dr.loc[dr.index.isin(grp1.index), "menge_im_lager"] = (
dr.loc[dr.index.isin(grp1.index), "menge_im_lager"] - grp1["ArtMengen1"]
)
关于python - 两个数据帧的 Pandas join.fillna 将所有值替换为,而不仅仅是 nan,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57746348/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!