- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个在 Linux 计算机上运行的 dask-scheduler 和工作程序,我尝试从 Windows 10 笔记本电脑发送网格搜索任务。
from dask.distributed import Client, progress
client = Client('10.133.20.17:8786',processes=False,threads_per_worker=4,n_workers=1, memory_limit='2GB')
from sklearn.datasets import make_classification
from sklearn.svm import SVC
from sklearn.externals import joblib
from sklearn.model_selection import GridSearchCV
import pandas as pd
param_grid = {"C": [0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0],
"kernel": ['rbf', 'poly', 'sigmoid'],
"shrinking": [True, False]}
grid_search = GridSearchCV(SVC(gamma='auto', random_state=0, probability=True),
param_grid=param_grid,
return_train_score=False,
iid=True,
cv=3,
n_jobs=-1)
with joblib.parallel_backend('dask'):
grid_search.fit(X, y)
我收到此错误distributed.protocol.core - 严重 - 无法反序列化
Traceback (most recent call last):
File "C:\Users\kselvam\SOFTS\anaconda3\lib\site-packages\distributed\protocol\core.py", line 132, in loads
value = _deserialize(head, fs, deserializers=deserializers)
File "C:\Users\kselvam\SOFTS\anaconda3\lib\site-packages\distributed\protocol\serialize.py", line 183, in deserialize
dumps, loads, wants_context = families[name]
KeyError: None
tornado.application - ERROR - Exception in callback functools.partial(<function wrap.<locals>.null_wrapper at 0x0000027207EB7950>, <Future finished exception=CancelledError(['_fit_and_score-batch-a4f6fd8cd0354973bb6b49d7f1530390'])>)
我不明白为什么它无法反序列化。当我作为本地集群(Windows)启动调度程序时,一切正常。操作系统的更改是否会影响序列化过程?我在linux和windows上分别有相同版本的sklearn(0.21.3),tornado(5.1.1)和dask(1.0.0)。
最佳答案
我的第一个猜测是您的软件在整个集群中并不统一。您可能需要使用以下内容验证您的软件环境:
client.get_versions(check=True)
关于python - Dask分布式计算反序列化错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/57854878/
如果我有一个依赖于某些全局或其他常量的函数,如下所示: x = 123 def f(partition): return partition + x # note that x is def
我们可以通过哪些方式在 Dask Arrays 中执行项目分配?即使是一个非常简单的项目分配,如:a[0] = 2 不起作用。 最佳答案 正确的。这是文档中提到的第一个限制。 通常,涉及 for 循环
[mapr@impetus-i0057 latest_code_deepak]$ dask-worker 172.26.32.37:8786 distributed.nanny - INFO -
我正在构建一个 FastAPI 应用程序,它将为 Dask 数组的 block 提供服务。我想利用 FastAPI's asynchronous functionality旁边Dask-distrib
在延迟数据帧处理的几个阶段之后,我需要在保存数据帧之前对其进行重新分区。但是,.repartition() 方法要求我知道分区的数量(而不是分区的大小),这取决于处理后数据的大小,这是未知的。 我想我
我正在努力转换 dask.bag将字典放入 dask.delayed pandas.DataFrames进入决赛 dask.dataframe 我有一个函数 (make_dict) 将文件读入一个相当
我正在尝试使用 dask_cudf/dask 读取单个大型 parquet 文件(大小 > gpu_size),但它目前正在读取它到一个分区中,我猜这是从文档字符串推断出的预期行为: dask.dat
当启动一个 dask 分布式本地集群时,您可以为 dashboard_address 设置一个随机端口或地址。 如果稍后获取scheduler对象。有没有办法提取仪表板的地址。 我有这个: clust
我有一个 dask 数据框,由 parquet 支持。它有 1.31 亿行,当我对整个帧执行一些基本操作时,它们需要几分钟。 df = dd.read_parquet('data_*.pqt') un
我正在使用 24 个 vCPU 的谷歌云计算实例。运行代码如下 import dask.dataframe as dd from distributed import Client client =
我正在尝试在多台机器上分发一个大型 Dask 数据帧,以便(稍后)在数据帧上进行分布式计算。我为此使用了 dask-distributed。 我看到的所有 dask 分布式示例/文档都是从网络资源(h
我在 Django 服务器后面使用 Dask,这里总结了我的基本设置:https://github.com/MoonVision/django-dask-demo/可以在这里找到 Dask 客户端:h
我有以下格式的 Dask DataFrame: date hour device param value 20190701 21 dev_01 att_1 0.00
我正在尝试使用 dask 而不是 Pandas,因为我有 2.6gb csv 文件。 我加载它,我想删除一列。但似乎无论是 drop 方法 df.drop('column') 或切片 df[ : ,
我有一个比我的内存大得多的文本文件。我想按字典顺序对该文件的行进行排序。我知道如何手动完成: 分成适合内存的块 对块进行排序 合并块 我想用 dask 来做。我认为处理大量数据将是 dask 的一个用
使用 Dask 的分布式调度程序时,我有一个正在远程工作人员上运行的任务,我想停止该任务。 我该如何阻止?我知道取消方法,但如果任务已经开始执行,这似乎不起作用。 最佳答案 如果它还没有运行 如果任务
我需要将一个非常大的 dask.bag 的元素提交到一个非线程安全的存储区,即我需要类似的东西 for x in dbag: store.add(x) 我无法使用compute,因为包太大,无
如果我有一个已经索引的 Dask 数据框 >>> A.divisions (None, None) >>> A.npartitions 1 我想设置分区,到目前为止我正在做 A.reset_index
根据 this回答,如果 Dask 知道数据帧的索引已排序,则 Dask 数据帧可以执行智能索引。 如果索引已排序,我如何让 Dask 知道? 在我的具体情况下,我正在做这样的事情: for sour
我想从具有特定数量的工作人员的 python 启动本地集群,然后将客户端连接到它。 cluster = LocalCluster(n_workers=8, ip='127.0.0.1') client
我是一名优秀的程序员,十分优秀!