gpt4 book ai didi

c# - 计算表面包含 4 个点的球心 (C#)

转载 作者:太空宇宙 更新时间:2023-11-03 20:21:00 27 4
gpt4 key购买 nike

我正在使用一个名为 MIConvexHull 的 3D Voronoi 库,它为 3D 空间中的一系列点计算 3D Voronoi 图。但是,它不提供有关 Voronoi 图结构的高级信息;报告的边缘只是一个坐标对列表,然后必须计算外心。

现在库提供了一系列二维点的外心计算的实现。正如您在这里看到的,显示了开始(橙色)和结束(绿色)的坐标对:

Edge coordinate pairs

您可以直观地看到,如果您取每条边中列出的顶点并制作一个圆,使该圆的圆周接触所有边,则中心就是边的起点。

我遇到的问题是我的点是 3D 的,因此返回的不是圆的中心,而是球体的中心。不幸的是,高等数学并不是我的头脑能够真正处理好的东西,所以我不知道如何解决这个问题。

给定 3D 空间中的 4 个点,如何获得球体的中心,使所有点都位于球体表面?

编辑:在 3D 中,将提供 4 个点,而不是 3 个。

最佳答案

我将上面链接的 Javascript 实现转换为 C#。在这里:

/// <summary>
/// Given four points in 3D space, solves for a sphere such that all four points
/// lie on the sphere's surface.
/// </summary>
/// <remarks>
/// Translated from Javascript on http://www.convertalot.com/sphere_solver.html, originally
/// linked to by http://stackoverflow.com/questions/13600739/calculate-centre-of-sphere-whose-surface-contains-4-points-c.
/// </remarks>
public class CircumcentreSolver
{
private const float ZERO = 0;
private double m_X0, m_Y0, m_Z0;
private double m_Radius;
private double[,] P =
{
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO }
};

/// <summary>
/// The centre of the resulting sphere.
/// </summary>
public double[] Centre
{
get { return new double[] { this.m_X0, this.m_Y0, this.m_Z0 }; }
}

/// <summary>
/// The radius of the resulting sphere.
/// </summary>
public double Radius
{
get { return this.m_Radius; }
}

/// <summary>
/// Whether the result was a valid sphere.
/// </summary>
public bool Valid
{
get { return this.m_Radius != 0; }
}

/// <summary>
/// Computes the centre of a sphere such that all four specified points in
/// 3D space lie on the sphere's surface.
/// </summary>
/// <param name="a">The first point (array of 3 doubles for X, Y, Z).</param>
/// <param name="b">The second point (array of 3 doubles for X, Y, Z).</param>
/// <param name="c">The third point (array of 3 doubles for X, Y, Z).</param>
/// <param name="d">The fourth point (array of 3 doubles for X, Y, Z).</param>
public CircumcentreSolver(double[] a, double[] b, double[] c, double[] d)
{
this.Compute(a, b, c, d);
}

/// <summary>
/// Evaluate the determinant.
/// </summary>
private void Compute(double[] a, double[] b, double[] c, double[] d)
{
P[0, 0] = a[0];
P[0, 1] = a[1];
P[0, 2] = a[2];
P[1, 0] = b[0];
P[1, 1] = b[1];
P[1, 2] = b[2];
P[2, 0] = c[0];
P[2, 1] = c[1];
P[2, 2] = c[2];
P[3, 0] = d[0];
P[3, 1] = d[1];
P[3, 2] = d[2];

// Compute result sphere.
this.Sphere();
}

private void Sphere()
{
double r, m11, m12, m13, m14, m15;
double[,] a =
{
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO }
};

// Find minor 1, 1.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0];
a[i, 1] = P[i, 1];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m11 = this.Determinant(a, 4);

// Find minor 1, 2.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 1];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m12 = this.Determinant(a, 4);

// Find minor 1, 3.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 2];
a[i, 3] = 1;
}
m13 = this.Determinant(a, 4);

// Find minor 1, 4.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 1];
a[i, 3] = 1;
}
m14 = this.Determinant(a, 4);

// Find minor 1, 5.
for (int i = 0; i < 4; i++)
{
a[i, 0] = P[i, 0] * P[i, 0] + P[i, 1] * P[i, 1] + P[i, 2] * P[i, 2];
a[i, 1] = P[i, 0];
a[i, 2] = P[i, 1];
a[i, 3] = P[i, 2];
}
m15 = this.Determinant(a, 4);

// Calculate result.
if (m11 == 0)
{
this.m_X0 = 0;
this.m_Y0 = 0;
this.m_Z0 = 0;
this.m_Radius = 0;
}
else
{
this.m_X0 = 0.5 * m12 / m11;
this.m_Y0 = -0.5 * m13 / m11;
this.m_Z0 = 0.5 * m14 / m11;
this.m_Radius = System.Math.Sqrt(this.m_X0 * this.m_X0 + this.m_Y0 * this.m_Y0 + this.m_Z0 * this.m_Z0 - m15 / m11);
}
}

/// <summary>
/// Recursive definition of determinate using expansion by minors.
/// </summary>
private double Determinant(double[,] a, int n)
{
int i, j, j1, j2;
double d = 0;
double[,] m =
{
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO },
{ ZERO, ZERO, ZERO, ZERO }
};

if (n == 2)
{
// Terminate recursion.
d = a[0, 0] * a[1, 1] - a[1, 0] * a[0, 1];
}
else
{
d = 0;
for (j1 = 0; j1 < n; j1++) // Do each column.
{
for (i = 1; i < n; i++) // Create minor.
{
j2 = 0;
for (j = 0; j < n; j++)
{
if (j == j1) continue;
m[i - 1, j2] = a[i, j];
j2++;
}
}

// Sum (+/-)cofactor * minor.
d = d + System.Math.Pow(-1.0, j1) * a[0, j1] * this.Determinant(m, n - 1);
}
}

return d;
}
}

关于c# - 计算表面包含 4 个点的球心 (C#),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13600739/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com