gpt4 book ai didi

python - 输入图像的小波二维散射变换

转载 作者:太空宇宙 更新时间:2023-11-03 20:16:44 25 4
gpt4 key购买 nike

我正在尝试对输入图像进行二维散射变换。当我运行以下代码时,出现此错误:“过滤器与乘法不兼容!”。有人可以帮忙吗?谢谢!

import torch
from kymatio import Scattering2D
import numpy as np
import PIL
from PIL import Image

FILENAME = "add a png file path"
image = PIL.Image.open(FILENAME).convert("L")

a = np.array(image).astype(np.float32)
x = torch.from_numpy(a)
imageSize=x.shape

scattering = Scattering2D(J=2, shape=imageSize, L=8)
Sx = scattering.forward(x)

print(Sx.size())

最佳答案

对于宽度和高度相等(正方形,而不是矩形)的小 1KB .png 来说似乎工作正常:

import torch
from kymatio import Scattering2D
import numpy as np
import PIL
from PIL import Image

FILENAME = "/path/to/dir/small_size_1_KB.png"
image = PIL.Image.open(FILENAME).convert("L")

a = np.array(image).astype(np.float64)
x = torch.from_numpy(a)
imageSize = x.shape

scattering = Scattering2D(J=2, shape=imageSize, L=8)

Sx = scattering.forward(x)

print(Sx.size())

输出

torch.Size([81, 19, 19])

您遇到的错误是在这个方法(backend_torch.py​​)中,应该对张量大小进行一些处理:

def cdgmm(A, B, inplace=False):
"""
Complex pointwise multiplication between (batched) tensor A and tensor B.

Parameters
----------
A : tensor
input tensor with size (B, C, M, N, 2)
B : tensor
B is a complex tensor of size (M, N, 2)
inplace : boolean, optional
if set to True, all the operations are performed inplace

Returns
-------
C : tensor
output tensor of size (B, C, M, N, 2) such that:
C[b, c, m, n, :] = A[b, c, m, n, :] * B[m, n, :]
"""
A, B = A.contiguous(), B.contiguous()
if A.size()[-3:] != B.size():
raise RuntimeError('The filters are not compatible for multiplication!')

if not iscomplex(A) or not iscomplex(B):
raise TypeError('The input, filter and output should be complex')

if B.ndimension() != 3:
raise RuntimeError('The filters must be simply a complex array!')

if type(A) is not type(B):
raise RuntimeError('A and B should be same type!')


C = A.new(A.size())

A_r = A[..., 0].contiguous().view(-1, A.size(-2)*A.size(-3))
A_i = A[..., 1].contiguous().view(-1, A.size(-2)*A.size(-3))

B_r = B[...,0].contiguous().view(B.size(-2)*B.size(-3)).unsqueeze(0).expand_as(A_i)
B_i = B[..., 1].contiguous().view(B.size(-2)*B.size(-3)).unsqueeze(0).expand_as(A_r)

C[..., 0].view(-1, C.size(-2)*C.size(-3))[:] = A_r * B_r - A_i * B_i
C[..., 1].view(-1, C.size(-2)*C.size(-3))[:] = A_r * B_i + A_i * B_r

return C if not inplace else A.copy_(C)

来源

https://github.com/edouardoyallon/pyscatwave/blob/master/scatwave/utils.py

关于python - 输入图像的小波二维散射变换,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58403385/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com