- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试使用 TensorFlow 2.0 应用引导式反向传播 ( https://arxiv.org/abs/1412.6806 )。要应用引导反向传播,我们需要修改 relu 梯度。我读了How to apply Guided BackProp in Tensorflow 2.0?中的对话并尝试改编代码 https://gist.github.com/falcondai/561d5eec7fed9ebf48751d124a77b087 ,然而结果并不如我所料。我不确定我错过了什么。
这是我所拥有的(结合上面来源的代码):
import tensorflow as tf
@tf.RegisterGradient("GuidedRelu")
def _GuidedReluGrad(op, grad):
dtype = op.inputs[0].dtype
gate_f = tf.cast(op.outputs[0] > 0, dtype) #for f^l > 0
gate_R = tf.cast(grad > 0, dtype) #for R^l+1 > 0
return gate_f * gate_R * grad
with tf.compat.v1.get_default_graph().gradient_override_map({'Relu': 'GuidedRelu'}):
with tf.GradientTape() as tape:
x = tf.constant([10., 2.])
tape.watch(x)
y = tf.nn.relu(x)
z = tf.reduce_sum(-y ** 2)
print(x.numpy())
print(y.numpy())
print(z.numpy())
print(tape.gradient(z, x).numpy())
输出为
[10. 2.]
[10. 2.]
-103.99999
[-20. -4.]
而不是
[10. 2.]
[10. 2.]
-103.99999
[0. 0.]
最佳答案
在 tf2.0/2.1 中似乎没有一种干净的方法。我使用的解决方法是通过使用使用 @custom_gradient
的自定义 ReLU 更改 ReLU 来修改我的模型。我受到this thread的启发。虽然有点慢,但至少可以用。 TF 肯定会更新以再次支持渐变重新映射。希望同时对您有所帮助。
编辑:讨论该问题的问题 here .
关于python - 在 TensorFlow 2.0 中实现引导式 BackProp?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58593653/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!