gpt4 book ai didi

python - 将 PIL 图像转换为 Base64 的更快方法

转载 作者:太空宇宙 更新时间:2023-11-03 20:11:13 25 4
gpt4 key购买 nike

这是我将 PIL 图像转换为 base64 的函数:

# input: single PIL image
def image_to_base64(self, image):
output_buffer = BytesIO()

now_time = time.time()
image.save(output_buffer, format='PNG')
print('--image.save:' + str(time.time()-now_time))

now_time = time.time()
byte_data = output_buffer.getvalue()
print('--output_buffer.getvalue:' + str(time.time()-now_time))

now_time = time.time()
encoded_input_string = base64.b64encode(byte_data)
print('--base64.b64encode:' + str(time.time()-now_time))

now_time = time.time()
input_string = encoded_input_string.decode("utf-8")
print('--encoded_input_string.decode:' + str(time.time()-now_time))

return input_string

我的输出:

--image.save:1.05138802528

--output_buffer.getvalue:0.000611066818237

--base64.b64encode:0.01047706604

--encoded_input_string.decode:0.0172328948975

正如我们所看到的,该函数慢得可怜。我们如何改进这一点?

[编辑]

好的!这是完整的示例

import time
import requests
import base64
from PIL import Image
from io import BytesIO


# input: single PIL image
def image_to_base64(image):
output_buffer = BytesIO()

now_time = time.time()
image.save(output_buffer, format='PNG')
print('--image.save:' + str(time.time()-now_time))

now_time = time.time()
byte_data = output_buffer.getvalue()
print('--output_buffer.getvalue:' + str(time.time()-now_time))

now_time = time.time()
encoded_input_string = base64.b64encode(byte_data)
print('--base64.b64encode:' + str(time.time()-now_time))

now_time = time.time()
input_string = encoded_input_string.decode("utf-8")
print('--encoded_input_string.decode:' + str(time.time()-now_time))

return input_string

img_url = "https://www.cityscapes-dataset.com/wordpress/wp-content/uploads/2015/07/stuttgart03.png"
response = requests.get(img_url)
img = Image.open(BytesIO(response.content))
input_string = image_to_base64(img)

这里的瓶颈是

image.save(output_buffer, format='PNG')

将 PIL 图像转换为字节。我想如果我能加快这一步就好了。

最佳答案

根据评论中的建议,我尝试了 pyvips 如下:

#!/usr/bin/env python3
import requests
import base64
import numpy as np
from PIL import Image
from io import BytesIO
from cv2 import imencode
import pyvips

def vips_2PNG(image,compression=6):
# Convert PIL Image to Numpy array
na = np.array(image)
height, width, bands = na.shape

# Convert Numpy array to Vips image
dtype_to_format = {
'uint8': 'uchar',
'int8': 'char',
'uint16': 'ushort',
'int16': 'short',
'uint32': 'uint',
'int32': 'int',
'float32': 'float',
'float64': 'double',
'complex64': 'complex',
'complex128': 'dpcomplex',
}
linear = na.reshape(width * height * bands)
vi = pyvips.Image.new_from_memory(linear.data, width, height, bands,dtype_to_format[str(na.dtype)])

# Save to memory buffer as PNG
data = vi.write_to_buffer(f".png[compression={compression}]")
return data

def vips_including_reading_from_disk(image):
# Load image from disk
image = pyvips.Image.new_from_file('stuttgart.png', access='sequential')
# Save to memory buffer as PNG
data = image.write_to_buffer('.png')
return data

def faster(image):
image_arr = np.array(image)
_, byte_data = imencode('.png', image_arr)
return byte_data

def orig(image, faster=True):
output_buffer = BytesIO()
image.save(output_buffer, format='PNG')
byte_data = output_buffer.getvalue()
return byte_data

# img_url = "https://www.cityscapes-dataset.com/wordpress/wp-content/uploads/2015/07/stuttgart03.png"
filename = 'stuttgart.png'
img = Image.open(filename)

# r = orig(img)
# print(len(r))
# %timeit r = orig(img)

# r = faster(img)
# print(len(r))
# %timeit r = faster(img)

# r = vips_including_reading_from_disk(filename)
# print(len(r))
# %timeit r = vips_including_reading_from_disk(filename)

# r = vips_2PNG(img,0)
# print(len(r))
# %timeit r = vips_2PNG(img,0)

我正在考虑在文件大小和速度之间权衡压缩参数。这是我得到的结果 - 我不会比较绝对值,而是查看我的机器上彼此的相对性能:

               Filesize        Time
PIL 1.7MB 1.12s
OpenCV 2.0MB 173ms <--- COMPARE
vips(comp=0) 6.2MB 66ms
vips(comp=1) 2.0MB 132ms <--- COMPARE
vips(comp=2) 2.0MB 153ms

我在要比较的旁边放置了箭头。

关于python - 将 PIL 图像转换为 Base64 的更快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58705700/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com