- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
CNN 的手写识别问题。有一个要求:从10000张测试图像中,保存1000张图像(.png或.jpg),准确分类每个文件夹中的100张图像(0 -> 9)。我该怎么做?我需要有关代码的说明。谢谢!代码:
import keras
from keras.datasets import mnist
from keras.layers import Dense, Activation, Flatten, Conv2D,
MaxPooling2D
from keras.models import Sequential
from keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
(train_X,train_Y), (test_X,test_Y) = mnist.load_data()
train_X = train_X.reshape(-1, 28,28, 1)
test_X = test_X.reshape(-1, 28,28, 1)
train_X = train_X.astype('float32')
test_X = test_X.astype('float32')
test_X = test_X / 255
train_Y_one_hot = to_categorical(train_Y)
test_Y_one_hot = to_categorical(test_Y)
model = Sequential()
model.add(Conv2D(64, (3,3), input_shape=(28, 28, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
model.fit(train_X, train_Y_one_hot, batch_size=64, epochs=1)
test_loss, test_acc = model.evaluate(test_X, test_Y_one_hot)
print('Test loss', test_loss)
print('Test accuracy', test_acc)
model.save('123.model')
predictions = model.predict(test_X)
print(np.argmax(np.round(predictions[235])))
plt.imshow(test_X[235].reshape(28, 28), cmap = 'Greys_r')
plt.show()
最佳答案
将正确分类的测试图像保存在其标签的相应文件夹中的完整代码
(0到9),每个文件夹100张图片如下:
import keras
from keras.datasets import mnist
from keras.layers import Dense, Activation, Flatten, Conv2D, MaxPooling2D
from keras.models import Sequential
from keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
(train_X,train_Y), (test_X,test_Y) = mnist.load_data()
train_X = train_X.reshape(-1, 28,28, 1)
test_X = test_X.reshape(-1, 28,28, 1)
train_X = train_X.astype('float32')
train_X = train_X/255
test_X = test_X.astype('float32')
test_X = test_X / 255
#train_Y_one_hot = to_categorical(train_Y)
#test_Y_one_hot = to_categorical(test_Y)
model = Sequential()
model.add(Conv2D(64, (3,3), input_shape=(28, 28, 1)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Dense(10))
model.add(Activation('softmax'))
model.compile(loss=keras.losses.sparse_categorical_crossentropy,
optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
#model.fit(train_X, train_Y_one_hot, batch_size=64, epochs=1)
model.fit(train_X, train_Y, batch_size=64, epochs=1)
#test_loss, test_acc = model.evaluate(test_X, test_Y_one_hot)
test_loss, test_acc = model.evaluate(test_X, test_Y)
print('Test loss', test_loss)
print('Test accuracy', test_acc)
predictions = model.predict(test_X)
#****Actual Code which you need is mentioned below
import matplotlib
import matplotlib.pyplot as plt
import os
def save_fig(fig_id, Label):
path = os.path.join('MNIST_Images', Label, fig_id + "." + "png")
plt.tight_layout()
plt.savefig(path, format="png", dpi=300)
plt.close()
%matplotlib agg
%matplotlib agg #These 2 lines are required to prohibit Graph being displayed in Jupyter Notebook. You can comment these if you are using other IDE
No_Of_Rows = predictions.shape[0]
Count_Dict = {}
for i in range(10):
key = 'Count_' + str(i)
Count_Dict[key] = 0
for Each_Row in range(No_Of_Rows):
if np.argmax(predictions[Each_Row]) == test_Y[Each_Row]:
Label = str(test_Y[Each_Row])
Count_Dict['Count_' + Label] = Count_Dict['Count_' + Label] + 1
Count_Of_Label = Count_Dict['Count_' + Label]
if Count_Of_Label <= 100:
plt.imshow(test_X[Each_Row].reshape(28, 28), cmap = 'Greys_r')
plt.show()
save_fig(str(Count_Of_Label), Label)
我已经注释了以下不需要的代码行,因为标签已经采用数字格式。
train_Y_one_hot = to_categorical(train_Y)
test_Y_one_hot = to_categorical(test_Y)
此外,我在 model.compile
中将 categorical_crossentropy
替换为 sparse_categorical_crossentropy
,因为我们没有对变量进行编码。
关于python - 如何保存用CNN正确分类的图像?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58761711/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!