- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在使用Functional API TensorFlow 1.15 中的 Keras。我的模型很复杂并且具有嵌套结构,所以我在想tf.name_scope
可能允许我创建一个很好的模块化结构,每个 block 都有自己独特的前缀添加到该 block 中的层中。但是,我似乎无法让它发挥作用。这是一个例子:
#!/usr/bin/env python
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Dense
if __name__ == '__main__':
inputs = Input((10,))
with tf.name_scope('block_1'):
x = Dense(32)(inputs)
x = Dense(32)(x)
with tf.name_scope('block_2'):
x = Dense(32)(x)
outputs = Dense(32)(x)
model = Model(inputs=inputs, outputs=outputs)
print("\nLayer Names:")
for layer in model.layers:
print(layer.name)
print("\nModel Summary:")
print(model.summary())
print("\nOutputs:", outputs.name)
我得到的输出是:
Layer Names:
input_1
dense
dense_1
dense_2
dense_3
Model Summary:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 10)] 0
_________________________________________________________________
dense (Dense) (None, 32) 352
_________________________________________________________________
dense_1 (Dense) (None, 32) 1056
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
dense_3 (Dense) (None, 32) 1056
=================================================================
Total params: 3,520
Trainable params: 3,520
Non-trainable params: 0
_________________________________________________________________
None
Outputs: block_2/dense_3/BiasAdd:0
如您所见,在最后一行,如果我只打印输出图层的名称,它似乎采用 name_scope
前缀,但如果我尝试从检索到的内容打印图层名称从模型来看,它不起作用。我希望图层名称看起来像
input_1
block_1/dense
block_1/dense_1
block_2/dense_2
block_2/dense_3
或者类似的东西。有关如何实现此目的的任何想法,或者是否有其他我应该知道的比 tf.name_scope
更适合此目的的机制?
最佳答案
tf.name_scope
将张量名称放入名称范围中。如果您在任何地方打印 x.name
,您将看到正确应用的范围名称,因为 x
是一个张量。另一方面,Keras 层不是张量,因此它们不尊重名称范围(可以吗?当然。为什么不呢?我不知道)。
您可以明确地为 Keras 层命名,例如Dense(32, name='scope_1/layer_1
。我不知道还有其他选择。
关于python - 模型中的 Keras 层命名不遵守 TF name_scope 前缀,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58939045/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!