- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有关于船舶位置的历史数据的数据集
id : the id of the ship
date : the date when the position was recorded (on a daily basis)
size: the size of the ship (categorical with 3 categories)
longitude
latitude
zone : binary (the variable to predict)
destination: The port of destination
heading : a numerical variable indicating the angle of direction of the ship
所以典型的行看起来像
id date size longitude latitude zone destination heading
123 20/04/2017 PMX 26.3565 -15.7474 True NYC 36.7654
根据一些标准,我可以意识到,对于每艘船,它们过去所做出的一组不同的轨迹。所以我创建了一个新功能,我称之为轨迹。我还创建了一个速度变量所以我的新数据框看起来像这样
id date size longitude latitude zone destination heading trajectory
123 20/04/2017 PMX 26.3565 -15.7474 True NYC 36.7654 1
123 21/04/2017 PMX 29.3556 -18.7498 True NYC 46.7654 1
123 15/05/2017 PMX 36.8760 12.3449 False CHINA 78.7640 2
... ........ .. ..... ..... .... .... ...... ..
567 13/04/2017 SFD 17.8687 16.8787 False Balb 23.3232 3
我必须为该区域实现一个分类算法,以确定 future 30 天内是否有船只经过该区域。我读过一些关于使用轨迹之间的自定义距离进行 DBSCAN 聚类的论文。但这是为了预测位置。所以我想知道是否有更简单的方法来解决这个问题?
最佳答案
对于典型的远洋货船来说,30 天基本上是一次旅程,但有时是两次。
所使用的路径往往非常相似,因为它们被认为是最佳的(围绕 Storm 的模路由)。这些路线不仅对于同一艘船来说是一致的,而且对于所有大小大致相似的船来说也是一致的。
因此,一种方法是根据历史数据构建路线库,而不是位置而是路径进行聚类。如果出发地和目的地相同或相似,您应该检查路线的相似程度。 “中国”不是一个足够精确的目的地,因此,如果这是您的真实输入数据,您应该丢弃该列,并通过检查每个旅程的实际最后位置附近的港口来生成您自己的目的地。
一旦远离陆地,货船的速度就会有些均匀,因此预测的路线应该足以预测每天旅程的位置。当然,一旦开始,您就可以根据已有的数据测试您的预测器。
你的目标区域越小,这就越困难。希望它们足够大。
关于python - 使用 python 预测长期船舶位置,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59007330/
我正在使用 R 预测包拟合模型,如下所示: fit <- auto.arima(df) plot(forecast(fit,h=200)) 打印原始数据框和预测。当 df 相当大时,这
我正在尝试预测自有住房的中位数,这是一个行之有效的例子,给出了很好的结果。 https://heuristically.wordpress.com/2011/11/17/using-neural-ne
type="class"函数中的type="response"和predict有什么区别? 例如: predict(modelName, newdata=testData, type = "class
我有一个名为 Downloaded 的文件夹,其中包含经过训练的 CNN 模型必须对其进行预测的图像。 下面是导入图片的代码: import os images = [] for filename i
关于预测的快速问题。 我尝试预测的值是 0 或 1(它设置为数字,而不是因子),因此当我运行随机森林时: fit , data=trainData, ntree=50) 并预测: pred, data
使用 Python,我尝试使用历史销售数据来预测产品的 future 销售数量。我还试图预测各组产品的这些计数。 例如,我的专栏如下所示: Date Sales_count Department It
我是 R 新手,所以请帮助我了解问题所在。我试图预测一些数据,但预测函数返回的对象(这是奇怪的类(因子))包含低数据。测试集大小为 5886 obs。 160 个变量,当预测对象长度为 110 时..
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 6 年前。 Improve this qu
下面是我的神经网络代码,有 3 个输入和 1 个隐藏层和 1 个输出: #Data ds = SupervisedDataSet(3,1) myfile = open('my_file.csv','r
我正在开发一个 Web 应用程序,它具有全文搜索功能,可以正常运行。我想对此进行改进并向其添加预测/更正功能,这意味着如果用户输入错误或结果为 0,则会查询该输入的更正版本,而不是查询结果。基本上类似
我对时间序列还很陌生。 这是我正在处理的数据集: Date Price Location 0 2012-01-01 1771.0
我有许多可变长度的序列。对于这些,我想训练一个隐马尔可夫模型,稍后我想用它来预测(部分)序列的可能延续。到目前为止,我已经找到了两种使用 HMM 预测 future 的方法: 1) 幻觉延续并获得该延
我正在使用 TensorFlow 服务提供初始模型。我在 Azure Kubernetes 上这样做,所以不是通过更标准和有据可查的谷歌云。 无论如何,这一切都在起作用,但是我感到困惑的是预测作为浮点
我正在尝试使用 Amazon Forecast 进行一些测试。我现在尝试了两个不同的数据集,它们看起来像这样: 13,2013-03-31 19:25:00,93.10999 14,2013-03-3
使用 numpy ndarray大多数时候我们不需要担心内存布局的问题,因为结果并不依赖于它。 除非他们这样做。例如,考虑这种设置 3x2 矩阵对角线的稍微过度设计的方法 >>> a = np.zer
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我正在 R 中使用 GLMM,其中混合了连续变量和 calcategories 变量,并具有一些交互作用。我使用 MuMIn 中的 dredge 和 model.avg 函数来获取每个变量的效果估计。
我能够在 GUI 中成功导出分类器错误,但无法在命令行中执行此操作。有什么办法可以在命令行上完成此操作吗? 我使用的是 Weka 3.6.x。在这里,您可以右键单击模型,选择“可视化分类器错误”并从那
我想在同一个地 block 上用不同颜色绘制多个预测,但是,比例尺不对。我对任何其他方法持开放态度。 可重现的例子: require(forecast) # MAKING DATA data
我从 UCI 机器学习数据集库下载了一个巨大的文件。 (~300mb)。 有没有办法在将数据集加载到 R 内存之前预测加载数据集所需的内存? Google 搜索了很多,但我到处都能找到如何使用 R-p
我是一名优秀的程序员,十分优秀!