- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个带有整数值的 NumPy 数组。矩阵的值范围从 0 到矩阵中的最大元素(换句话说,矩阵中呈现从 0 到最大数据元素的所有数字)。我需要构建有效的(有效意味着快速完全矢量化解决方案)来搜索每行中的元素数量并根据矩阵值对它们进行编码。
我找不到类似的问题,或者以某种方式帮助解决这个问题的问题。
所以如果我在输入中有这个数据
:
# shape is (N0=4, m0=4)
1 1 0 4
2 4 2 1
1 2 3 5
4 4 4 1
期望的输出是:
# shape(N=N0, m=data.max()+1):
1 2 0 0 1 0
0 1 2 0 1 0
0 1 1 1 0 1
0 1 0 0 3 0
我知道如何解决这个问题,只需逐一迭代计算每行 data
中的唯一值,然后考虑 data
中所有可能的值来组合结果大批。
虽然使用 NumPy 进行向量化,但关键问题是逐一搜索每个数字很慢,并且假设存在大量唯一数字,这不是有效的解决方案。一般来说,N
和唯一数字计数都相当大(顺便说一下,N
似乎比唯一数字计数要大)。
有人有很棒的想法吗?)
最佳答案
这基本上就是 np.bincount
的作用。与1D
数组一样。但是,我们需要在每一行迭代地使用它(简单地思考一下)。为了使其矢量化,我们可以将每行偏移该最大数。这个想法是为每行设置不同的 bin,这样它们就不会受到具有相同编号的其他行元素的影响。
因此,实现将是 -
# Vectorized solution
def bincount2D_vectorized(a):
N = a.max()+1
a_offs = a + np.arange(a.shape[0])[:,None]*N
return np.bincount(a_offs.ravel(), minlength=a.shape[0]*N).reshape(-1,N)
示例运行 -
In [189]: a
Out[189]:
array([[1, 1, 0, 4],
[2, 4, 2, 1],
[1, 2, 3, 5],
[4, 4, 4, 1]])
In [190]: bincount2D_vectorized(a)
Out[190]:
array([[1, 2, 0, 0, 1, 0],
[0, 1, 2, 0, 1, 0],
[0, 1, 1, 1, 0, 1],
[0, 1, 0, 0, 3, 0]])
Numba 调整
我们可以引入numba
以进一步加快速度。现在,numba
允许进行一些调整。
首先,它允许 JIT 编译。
此外,最近他们推出了实验性的 parallel
自动并行化已知具有并行语义的函数中的操作。
最后的调整是使用 prange
作为 range
的替代品。文档指出,这会并行运行循环,类似于 OpenMP 并行 for 循环和 Cython 的 prange。 prange
在较大的数据集上表现良好,这可能是因为设置并行工作所需的开销。
因此,通过这两项新的调整以及 njit
对于非 Python 模式,我们将有三种变体 -
# Numba solutions
def bincount2D_numba(a, use_parallel=False, use_prange=False):
N = a.max()+1
m,n = a.shape
out = np.zeros((m,N),dtype=int)
# Choose fucntion based on args
func = bincount2D_numba_func0
if use_parallel:
if use_prange:
func = bincount2D_numba_func2
else:
func = bincount2D_numba_func1
# Run chosen function on input data and output
func(a, out, m, n)
return out
@njit
def bincount2D_numba_func0(a, out, m, n):
for i in range(m):
for j in range(n):
out[i,a[i,j]] += 1
@njit(parallel=True)
def bincount2D_numba_func1(a, out, m, n):
for i in range(m):
for j in range(n):
out[i,a[i,j]] += 1
@njit(parallel=True)
def bincount2D_numba_func2(a, out, m, n):
for i in prange(m):
for j in prange(n):
out[i,a[i,j]] += 1
为了完整性和稍后测试,循环版本将是 -
# Loopy solution
def bincount2D_loopy(a):
N = a.max()+1
m,n = a.shape
out = np.zeros((m,N),dtype=int)
for i in range(m):
out[i] = np.bincount(a[i], minlength=N)
return out
运行时测试
案例#1:
In [312]: a = np.random.randint(0,100,(100,100))
In [313]: %timeit bincount2D_loopy(a)
...: %timeit bincount2D_vectorized(a)
...: %timeit bincount2D_numba(a, use_parallel=False, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=True)
10000 loops, best of 3: 115 µs per loop
10000 loops, best of 3: 36.7 µs per loop
10000 loops, best of 3: 22.6 µs per loop
10000 loops, best of 3: 22.7 µs per loop
10000 loops, best of 3: 39.9 µs per loop
案例#2:
In [316]: a = np.random.randint(0,100,(1000,1000))
In [317]: %timeit bincount2D_loopy(a)
...: %timeit bincount2D_vectorized(a)
...: %timeit bincount2D_numba(a, use_parallel=False, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=True)
100 loops, best of 3: 2.97 ms per loop
100 loops, best of 3: 3.54 ms per loop
1000 loops, best of 3: 1.83 ms per loop
100 loops, best of 3: 1.78 ms per loop
1000 loops, best of 3: 1.4 ms per loop
案例#3:
In [318]: a = np.random.randint(0,1000,(1000,1000))
In [319]: %timeit bincount2D_loopy(a)
...: %timeit bincount2D_vectorized(a)
...: %timeit bincount2D_numba(a, use_parallel=False, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=False)
...: %timeit bincount2D_numba(a, use_parallel=True, use_prange=True)
100 loops, best of 3: 4.01 ms per loop
100 loops, best of 3: 4.86 ms per loop
100 loops, best of 3: 3.21 ms per loop
100 loops, best of 3: 3.18 ms per loop
100 loops, best of 3: 2.45 ms per loop
看起来 numba
变体表现得非常好。从三种变体中选择一种取决于输入数组形状参数,并在某种程度上取决于其中唯一元素的数量。
关于python - 每行 Bin 元素 - NumPy 的矢量化 2D Bincount,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59115234/
猫f1.txt阿曼维沙尔阿杰贾伊维杰拉胡尔曼尼什肖比特批评塔夫林现在输出应该符合上面给定的条件 最佳答案 您可以在文件读取循环中设置一个计数器并打印它, 计数=0 读取行时做 让我们数一数++ if
我正在尝试查找文件 1 和文件 2 中的共同行。如果公共(public)行存在,我想写入文件 2 中的行,否则打印文件 1 中的非公共(public)行。fin1 和 fin2 是这里的文件句柄。它读
我有这个 SQL 脚本: CREATE TABLE `table_1` ( `IDTable_1` int(11) NOT NULL, PRIMARY KEY (`IDTable_1`) );
我有 512 行要插入到数据库中。我想知道提交多个插入内容是否比提交一个大插入内容有任何优势。例如 1x 512 行插入 -- INSERT INTO mydb.mytable (id, phonen
如何从用户中选择user_id,SUB(row, row - 1),其中user_id=@userid我的表用户,id 为 1、3、4、10、11、23...(不是++) --id---------u
我曾尝试四处寻找解决此问题的最佳方法,但我找不到此类问题的任何先前示例。 我正在构建一个基于超本地化的互联网购物中心,该区域分为大约 3000 个区域。每个区域包含大约 300 个项目。它们是相似的项
preg_match('|phpVersion = (.*)\n|',$wampConfFileContents,$result); $phpVersion = str_replace('"','',
我正在尝试创建一个正则表达式,使用“搜索并替换全部”删除 200 个 txt 文件的第一行和最后 10 行 我尝试 (\s*^(\h*\S.*)){10} 删除包含的前 10 行空白,但效果不佳。 最
下面的代码从数据库中获取我需要的信息,但没有打印出所有信息。首先,我知道它从表中获取了所有正确的信息,因为我已经在 sql Developer 中尝试过查询。 public static void m
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我试图在两个表中插入记录,但出现异常。您能帮我解决这个问题吗? 首先我尝试了下面的代码。 await _testRepository.InsertAsync(test); await _xyzRepo
这个基本的 bootstrap CSS 显示 1 行 4 列: Text Text Text
如果我想从表中检索前 10 行,我将使用以下代码: SELECT * FROM Persons LIMIT 10 我想知道的是如何检索前 10 个结果之后的 10 个结果。 如果我在下面执行这段代码,
今天我开始使用 JexcelApi 并遇到了这个:当您尝试从特定位置获取元素时,不是像您通常期望的那样使用sheet.getCell(row,col),而是使用sheet.getCell(col,ro
我正在尝试在我的网站上开发一个用户个人资料系统,其中包含用户之前发布的 3 个帖子。我可以让它选择前 3 条记录,但它只会显示其中一条。我是不是因为凌晨 2 点就想编码而变得愚蠢? query($q)
我在互联网上寻找答案,但找不到任何答案。 (我可能问错了?)我有一个看起来像这样的表: 我一直在使用查询: SELECT title, date, SUM(money) FROM payments W
我有以下查询,我想从数据库中获取 100 个项目,但 host_id 多次出现在 urls 表中,我想每个 host_id 从该表中最多获取 10 个唯一行。 select * from urls j
我的数据库表中有超过 500 行具有特定日期。 查询特定日期的行。 select * from msgtable where cdate='18/07/2012' 这将返回 500 行。 如何逐行查询
我想使用 sed 从某一行开始打印 n 行、跳过 n 行、打印 n 行等,直到文本文件结束。例如在第 4 行声明,打印 5-9,跳过 10-14,打印 15-19 等 来自文件 1 2 3 4 5 6
我目前正在执行验证过程来检查用户的旧密码,但问题是我无法理解为什么我的查询返回零行,而预期它有 1 行。另一件事是,即使我不将密码文本转换为 md5,哈希密码仍然得到正确的答案,但我不知道为什么会发生
我是一名优秀的程序员,十分优秀!