- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。
我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X
作为 (1, n_inputs)
向量。我想将其用作 (n_samples, n_inputs)
数组,并且仍然具有前向/后向传递的正确矢量化实现。
我编写了以下前向传递,标准化每行/样本的输出(正确吗?):
import numpy as np
X = np.asarray([
[0.0, 0.0],
[0.0, 1.0],
[1.0, 0.0],
[1.0, 1.0]], dtype=np.float32)
def prop(self, X):
s = np.exp(X)
s = s.T / np.sum(s, axis=1)
return s.T
它给出了前向传播(包括其他层)的最终结果:
Y = np.asarray([
[0.5 , 0.5 ],
[0.87070241, 0.12929759],
[0.97738616, 0.02261384],
[0.99200957, 0.00799043]], dtype=np.float32))
所以,如果正确的话,这就是 softmax 的输出。现在,我应该如何编写向后传递?
我导出了 softmax 的导数为:
1) if i=j
: p_i*(1 - p_j)
,
2) if i!=j
: -p_i*p_j
,
我尝试将导数计算为:
ds = np.diag(Y.flatten()) - np.outer(Y, Y)
但是它会产生 8x8 矩阵,这对于以下反向传播没有意义......正确的编写方法是什么?
最佳答案
我一直在处理同样的问题,并最终找到了一种对 softmax 雅可比行列式的批量实现进行矢量化的方法。我自己想出了这个方法,所以我不确定这是否是最佳方法。这是我的想法:
import numpy as np
from scipy.special import softmax
def Jsoftmax(X):
sh = X.shape
sm = softmax(X, axis = 1)
DM = sm.reshape(sh[0],-1,1) * np.diag(np.ones(sh[1])) # Diagonal matrices
OP = np.matmul(sm.reshape(sh[0],-1,1), sm.reshape(sh[0],1,-1)) # Outer products
Jsm = DM - OP
return Jsm
它产生一个(n_samples, n_inputs, n_inputs)
形状的数组,我认为它可以在反向传播中与np.matmul
函数一起使用,以正确地预乘您的dJ_dA
数组。
值得注意的是,softmax 几乎专门用作最后一层,并且通常带有交叉熵损失目标函数。在这种情况下,目标函数相对于 softmax 输入的导数可以更有效地找到为 (S - Y)/m
,其中 m
是批处理中的示例,Y
是批处理的标签,S
是 softmax 输出。这在下面link中有解释。 .
关于python - 矢量化 softmax 梯度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59286911/
我正在尝试调整 tf DeepDream 教程代码以使用另一个模型。现在当我调用 tf.gradients() 时: t_grad = tf.gradients(t_score, t_input)[0
考虑到 tensorflow 中 mnist 上的一个简单的小批量梯度下降问题(就像在这个 tutorial 中),我如何单独检索批次中每个示例的梯度。 tf.gradients()似乎返回批次中所有
当我在 numpy 中计算屏蔽数组的梯度时 import numpy as np import numpy.ma as ma x = np.array([100, 2, 3, 5, 5, 5, 10,
除了数值计算之外,是否有一种快速方法来获取协方差矩阵(我的网络激活)的导数? 我试图将其用作深度神经网络中成本函数中的惩罚项,但为了通过我的层反向传播误差,我需要获得导数。 在Matlab中,如果“a
我有一个计算 3D 空间标量场值的函数,所以我为它提供 x、y 和 z 坐标(由 numpy.meshgrid 获得)的 3D 张量,并在各处使用元素运算。这按预期工作。 现在我需要计算标量场的梯度。
我正在使用内核密度估计 (KDE) ( http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.htm
我对 tensorflow gradient documentation 中的示例感到困惑用于计算梯度。 a = tf.constant(0.) b = 2 * a g = tf.gradients(
我有一个 softmax 层(只有激活本身,没有将输入乘以权重的线性部分),我想对其进行向后传递。 我找到了很多关于 SO 的教程/答案来处理它,但它们似乎都使用 X 作为 (1, n_inputs)
仅供引用,我正在尝试使用 Tensorflow 实现梯度下降算法。 我有一个矩阵X [ x1 x2 x3 x4 ] [ x5 x6 x7 x8 ] 我乘以一些特征向量 Y 得到 Z [ y
我目前有一个由几百万个不均匀分布的粒子组成的体积,每个粒子都有一个属性(对于那些好奇的人来说是潜在的),我想为其计算局部力(加速度)。 np.gradient 仅适用于均匀间隔的数据,我在这里查看:S
我正在寻找有关如何实现 Gradient (steepest) Descent 的建议在 C 中。我正在寻找 f(x)=||Ax-y||^2 的最小值,其中给出了 A(n,n) 和 y(n)。 这在
我正在查看 SVM 损失和导数的代码,我确实理解了损失,但我无法理解如何以矢量化方式计算梯度 def svm_loss_vectorized(W, X, y, reg): loss = 0.0 dW
我正在寻找一种有效的方法来计算 Julia 中多维数组的导数。准确地说,我想要一个等效的 numpy.gradient在 Julia 。但是,Julia 函数 diff : 仅适用于二维数组 沿微分维
我在cathesian 2D 系统中有两个点,它们都给了我向量的起点和终点。现在我需要新向量和 x 轴之间的角度。 我知道梯度 = (y2-y1)/(x2-x1) 并且我知道角度 = arctan(g
我有一个 2D 数组正弦模式,想要绘制该函数的 x 和 y 梯度。我有一个二维数组 image_data : def get_image(params): # do some maths on
假设我有一个针对 MNIST 数据的简单 TensorFlow 模型,如下所示 import tensorflow as tf from tensorflow.examples.tutorials.m
我想查看我的 Tensorflow LSTM 随时间变化的梯度,例如,绘制从 t=N 到 t=0 的梯度范数。问题是,如何从 Tensorflow 中获取每个时间步长的梯度? 最佳答案 在图中定义:
我有一个简单的神经网络,我试图通过使用如下回调使用张量板绘制梯度: class GradientCallback(tf.keras.callbacks.Callback): console =
在CIFAR-10教程中,我注意到变量被放置在CPU内存中,但它在cifar10-train.py中有说明。它是使用单个 GPU 进行训练的。 我很困惑..图层/激活是否存储在 GPU 中?或者,梯度
我有一个 tensorflow 模型,其中层的输出是二维张量,例如 t = [[1,2], [3,4]] . 下一层需要一个由该张量的每一行组合组成的输入。也就是说,我需要把它变成t_new = [[
我是一名优秀的程序员,十分优秀!