- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我在 keras 中创建了一个自定义层,它只是在输入和内核之间执行点积。但对于内核,我想使用批处理的平均值作为内核初始化,这意味着取批处理的平均值并生成一个初始值为该平均值的内核。为此,我创建了一个自定义内核初始值设定项,如下所示:
class Tensor_Init(Initializer):
"""Initializer that generates tensors initialized to a given tensor.
# Arguments
Tensor: the generator tensors.
"""
def __init__(self, Tensor=None):
self.Tensor = Tensor
def __call__(self, shape, dtype=None):
return tf.Variable(self.Tensor)
def get_config(self):
return {'Tensor': self.Tensor}
这是keras中自定义层的调用方法。我只是计算批处理的平均值,并将其与上面的初始化器类一起使用来生成内核。我在自定义层中按如下方式使用它
def call(self, inputs):
data_format = conv_utils.convert_data_format(self.data_format, self.rank + 2)
inputs = tf.extract_image_patches(
inputs,
ksizes=(1,) + self.kernel_size + (1,),
strides=(1,) + self.strides + (1,),
rates=(1,) + self.dilation_rate + (1,),
padding=self.padding.upper(),
)
inputs = K.reshape(inputs,[-1,inputs.get_shape().as_list()[1],inputs.get_shape().as_list()
[2],self.kernel_size[0]*self.kernel_size[1] ,self.output_dim])
self.kernel = self.add_weight(name='kernel',shape=(),initializer=Tensor_Init(Tensor=tf.reduce_mean(inputs, 0)),trainable=True)
outputs = (tf.einsum('NHWKC,HWKC->NHWC',inputs,self.kernel)+self.c)**self.p
if self.data_format == 'channels_first':
outputs = K.permute_dimensions(outputs, (0, 3, 1, 2))
return outputs
模型已正常创建和编译,但我开始训练时收到此错误
InvalidArgumentError: You must feed a value for placeholder tensor 'conv2d_1_input' with dtype float and shape [?,48,48,3]
[[node conv2d_1_input (defined at C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py:736) ]]
Original stack trace for 'conv2d_1_input':
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel_launcher.py", line 16, in <module>
app.launch_new_instance()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 563, in start
self.io_loop.start()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\platform\asyncio.py", line 148, in start
self.asyncio_loop.run_forever()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\asyncio\base_events.py", line 438, in run_forever
self._run_once()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\asyncio\base_events.py", line 1451, in _run_once
handle._run()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\asyncio\events.py", line 145, in _run
self._callback(*self._args)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 690, in <lambda>
lambda f: self._run_callback(functools.partial(callback, future))
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 743, in _run_callback
ret = callback()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 787, in inner
self.run()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 748, in run
yielded = self.gen.send(value)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 378, in dispatch_queue
yield self.process_one()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 225, in wrapper
runner = Runner(result, future, yielded)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 714, in __init__
self.run()
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 748, in run
yielded = self.gen.send(value)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 365, in process_one
yield gen.maybe_future(dispatch(*args))
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 272, in dispatch_shell
yield gen.maybe_future(handler(stream, idents, msg))
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 542, in execute_request
user_expressions, allow_stdin,
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tornado\gen.py", line 209, in wrapper
yielded = next(result)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 294, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 536, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2855, in run_cell
raw_cell, store_history, silent, shell_futures)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2881, in _run_cell
return runner(coro)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\async_helpers.py", line 68, in _pseudo_sync_runner
coro.send(None)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 3058, in run_cell_async
interactivity=interactivity, compiler=compiler, result=result)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 3249, in run_ast_nodes
if (await self.run_code(code, result, async_=asy)):
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 3326, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-2-35eda01d200a>", line 75, in <module>
model = create_vgg16()
File "<ipython-input-2-35eda01d200a>", line 12, in create_vgg16
model.add(Conv2D(64, (5, 5), input_shape=(48,48,3), padding='same'))
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\sequential.py", line 162, in add
name=layer.name + '_input')
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\input_layer.py", line 178, in Input
input_tensor=tensor)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\input_layer.py", line 87, in __init__
name=self.name)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py", line 736, in placeholder
shape=shape, ndim=ndim, dtype=dtype, sparse=sparse, name=name)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\keras\backend.py", line 998, in placeholder
x = array_ops.placeholder(dtype, shape=shape, name=name)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\array_ops.py", line 2143, in placeholder
return gen_array_ops.placeholder(dtype=dtype, shape=shape, name=name)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 7401, in placeholder
"Placeholder", dtype=dtype, shape=shape, name=name)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 788, in _apply_op_helper
op_def=op_def)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\util\deprecation.py", line 507, in new_func
return func(*args, **kwargs)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 3616, in create_op
op_def=op_def)
File "C:\ProgramData\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2005, in __init__
self._traceback = tf_stack.extract_stack()
最佳答案
我只需创建一个零初始化的内核,然后为其分配平均值,就可以将批处理的平均值传递给内核,甚至无需创建自定义初始化程序。我修改了自定义图层如下
def call(self, inputs):
data_format = conv_utils.convert_data_format(self.data_format, self.rank + 2)
inputs = tf.extract_image_patches(
inputs,
ksizes=(1,) + self.kernel_size + (1,),
strides=(1,) + self.strides + (1,),
rates=(1,) + self.dilation_rate + (1,),
padding=self.padding.upper(),
)
inputs = K.reshape(inputs,[-1,inputs.get_shape().as_list()[1],inputs.get_shape().as_list()
[2],self.kernel_size[0]*self.kernel_size[1] ,self.output_dim])
weights = tf.reduce_mean(inputs, 0)
self.kernel = self.add_weight(name='kernel',
shape=(weights.get_shape().as_list()[0],weights.get_shape().as_list()
[1],weights.get_shape().as_list()[2],weights.get_shape().as_list()[3]),
initializer='zeros',
trainable=True)
tf.compat.v1.assign(self.kernel, weights)
outputs = (tf.einsum('NHWKC,HWKC->NHWC',inputs,self.kernel)+self.c)**self.p
if self.data_format == 'channels_first':
outputs = K.permute_dimensions(outputs, (0, 3, 1, 2))
return outputs
关于python - 如何使用张量初始化内核,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59427019/
我是 Spring 新手,这就是我想要做的事情: 我正在使用一个基于 Maven 的库,它有自己的 Spring 上下文和 Autowiring 字段。 它的bean配置文件是src/test/res
我在我的测试脚本中有以下列表初始化: newSequenceCore=["ls", "ns", "*", "cm", "*", "ov", "ov", "ov", "ov", "kd"] (代表要在控
这个问题在这里已经有了答案: 关闭 11 年前。 Possible Duplicate: Class construction with initial values 当我查看 http://en.
我得到了成员变量“objectCount”的限定错误。编译器还返回“ISO C++ 禁止非常量静态成员的类内初始化”。这是主类: #include #include "Tree.h" using n
我有如下所示的a.h class A { public: void doSomething()=0; }; 然后我有如下所示的b.h #include "a.h" class b: publi
我需要解析 Firebase DataSnapshot (一个 JSON 对象)转换成一个数据类,其属性包括 enum 和 list。所以我更喜欢通过传递 DataSnapshot 来手动解析它进入二
我使用 JQuery 一段时间了,我总是使用以下代码来初始化我的 javascript: $(document).ready( function() { // Initalisation logic
这里是 Objective-C 菜鸟。 为什么会这样: NSString *myString = [NSString alloc]; [myString initWithFormat:@"%f", s
我无法让核心数据支持的 NSArrayController 在我的代码中正常工作。下面是我的代码: pageArrayController = [[NSArrayController alloc] i
我对这一切都很陌生,并且无法将其安装到我的后端代码中。它去哪里?在我的页脚下面有我所有的 JS? 比如,这是什么意思: Popup initialization code should be exec
这可能是一个简单的问题,但是嘿,我是初学者。 所以我创建了一个程序来计算一些东西,它目前正在控制台中运行。我决定向其中添加一个用户界面,因此我使用 NetBeans IDE 中的内置功能创建了一个 J
我有 2 个 Controller ,TEST1Controller 和 TEST2Controller 在TEST2Controller中,我有一个initialize()函数设置属性值。 如果我尝
据我所知, dependentObservable 在声明时会进行计算。但如果某些值尚不存在怎么办? 例如: var viewModel ={}; var dependentObservable1 =
我正在阅读 POODR 这本书,它使用旧语法进行默认值初始化。我想用新语法实现相同的功能。 class Gear attr_reader :chainring, :cog, :wheel de
我按照 polymer 教程的说明进行操作: https://www.polymer-project.org/3.0/start/install-3-0 (我跳过了可选部分) 但是,在我执行命令“po
很抱歉问到一个非常新手的Kotlin问题,但是我正在努力理解与构造函数和初始化有关的一些东西。 我有这个类和构造函数: class TestCaseBuilder constructor(
假设我们有一个包含 30 列和 30 行的网格。 生命游戏规则简而言之: 一个小区有八个相邻小区 当一个细胞拥有三个存活的相邻细胞时,该细胞就会存活 如果一个细胞恰好有两个或三个活的相邻细胞,那么它就
我是 MQTT 和 Android 开放附件“AOA” 的新手。在阅读教程时,我意识到,在尝试写入 ByteArrayOutputStream 类型的变量之前,应该写入 0 或 0x00首先到该变量。
我有 2 个 Controller ,TEST1Controller 和 TEST2Controller 在TEST2Controller中,我有一个initialize()函数设置属性值。 如果我尝
我有一个inotify /内核问题。我正在使用“inotify” Python项目进行观察,但是,我的问题仍然是固有的关于inotify内核实现的核心。 Python inotify项目处理递归ino
我是一名优秀的程序员,十分优秀!