- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我一直在研究一种在并行处理中反转拉普拉斯变换的算法(即同时积分 s 空间中的多个拉普拉斯函数),但我知道一个事实,即并行处理不是问题,因为实现此方法是为了解决问题。但问题仍然存在,本质上我的代码一遍又一遍地吐出这个:
Denominator too small. Exiting...
以及各种域错误。我指出了问题所在。基本上是这样的:
for u in np.linspace(0.000001, 100, 1000000):
当
u
传递给我想要集成的任何函数时,
变为全零。不确定是否是集成功能:
x_1[num] = x * (-1) ** k * quad(f_p(num), -math.pi / 2, math.pi / 2, args=(u,))[0]
或拉普拉斯函数f_p
本身,但我已经尝试了一切,我不能浪费更多的时间旋转我的轮子。如果我能得到任何帮助,我将不胜感激。以下是运行第一次拉普拉斯反演所需的代码:
import numpy as np
from scipy.integrate import quad
import math
import multiprocessing as mp
gamma = 10
num = 1
k = 1
n = 0
epsilon = 10 ** -16
max_err = 10 ** -10
max_count = 1000000
x_iter = np.arange(1, 7)
x_1 = np.arange(1, 7)
x_2 = np.arange(1, 7)
x_3 = np.arange(1, 7)
denom = np.arange(1, 7)
AX = np.arange(1, 7)
a = gamma
def f_p1(omega, u):
b = (omega + k * math.pi) / u
f1 = a * (1 / (a ** 2 + (b + 1) ** 2) + 1 / (a ** 2 + (b - 1) ** 2))
return f1 * math.cos(omega)
def f_p(num):
if num == 1:
return f_p1
def f_0(u, num):
x = 2 * math.e ** (gamma * u) / (math.pi * u)
return x * quad(f_p(num), 0, math.pi / 2, args=(u,))[0]
def f_u(u, num):
k = 1
x = 2 * math.e ** (gamma * u) / (math.pi * u)
x_1[num] = x * (-1) ** k * quad(f_p(num), -math.pi / 2, math.pi / 2, args=(u,))[0]
AX[num] = f_0(u, num)
for j in range(max_count):
if j > 0:
x_1[num] = x_iter[num]
k += 1
x_2[num] = x * (-1) ** k * quad(f_p(num), -math.pi / 2, math.pi / 2, args=(u,))[0]
k += 1
x_3[num] = x * (-1) ** k * quad(f_p(num), -math.pi / 2, math.pi / 2, args=(u,))[0]
denom[num] = (x_3[num] - x_2[num]) - (x_2[num] - x_1[num])
if(abs(denom[num]) < epsilon):
print("Denominator too small. Exiting...\n")
break
AX[num] = x_3[num] - ((x_3[num] - x_2[num]) ** 2) / denom[num]
k += 1
if(abs(AX[num] - x_3[num]) < max_err):
print("Equation " + str(num) + "converges to " + str(AX[num]) + "\n")
break
x_iter[num] = AX[num]
np.zeros(x_1)
np.zeros(x_2)
np.zeros(x_3)
np.zeros(denom)
np.zeros(AX)
if __name__ == '__main__':
mp.set_start_method('spawn')
for u in np.linspace(0.000001, 100, max_count):
p1 = mp.Process(target=f_u, args=(u, 1))
p2 = mp.Process(target=f_u, args=(u, 2))
p3 = mp.Process(target=f_u, args=(u, 3))
p4 = mp.Process(target=f_u, args=(u, 4))
p5 = mp.Process(target=f_u, args=(u, 5))
p6 = mp.Process(target=f_u, args=(u, 6))
p1.start()
p2.start()
p3.start()
p4.start()
p5.start()
p6.start()
p1.join()
p2.join()
p3.join()
p4.join()
p5.join()
p6.join()
exit(0)
最佳答案
这是一个愚蠢的问题,我并没有真正理解 scipy 的 quad
函数是如何工作的,并且不小心将 f_1(num)
放在了我想要该函数的位置与 omega
集成。我也没有将 k
放入参数中,而是在 Aitken 加速后添加而不是从 k
中减去(等于 AX
的部分) .
最后我还有np.zeros(AX)
,这也导致了很多问题。总的来说就是很乱。
它现在可以工作了,我按照一个人的建议删除了多重处理,以便同时绘制这些函数。根本没有看到性能有太大影响,想想吧。
但是,由于某种原因它仍然没有给出正确的答案,而且我知道这不是拉普拉斯方程(f_1
)不正确。我认为这与我迭代向量u
的方式有关...如果有人知道如何对变量进行积分并在args=中拥有另一个变量
部分未集成,请告诉我!
这是现在的示例,供后代使用。最初的方程是为了对多个方程执行此操作而建立的,但我将其减少到 1 以使其相对简短。也尝试使用 gamma 参数——它改变了它的收敛方式,但不是我想要的方式:
import matplotlib.pyplot as plt
from matplotlib import style
import numpy as np
from scipy.integrate import quad, simps
import random
import datetime
from numba import jit
start = datetime.datetime.now() # Record time start
# Initialize variables
gamma = 2 # Bromwich contour parameter
max_count = 1000 # Number of data points in x and y
epsilon = 10 ** -40 # Minimum number to divide by in Aitken's iteration
err = 10 ** -4 # Maximum difference in y to trigger comparison in closing()
max_err = 0.01 # Maximum difference in integrals computed in closing() to end iteration process
result = 0 # Store Aitken's iteration for closing() comparison
previous = 0 # Store iteration before Aitken's for closing() comparison
u, step = np.linspace(0.000005, 10, max_count, retstep=True) # Initializing x values
y = np.empty([4, max_count]) # Initializing y values -- form is y[iteration in Aitken's][x value]
y_denom = np.empty([max_count]) # Initializing array to store Aitken's denominator values
x_iter = np.empty([max_count]) # Initializing array to store Aitken's iteration as starting point for next iteration
# Initialize plot
style.use('fivethirtyeight')
fig = plt.figure()
ax = fig.add_subplot(111)
plt.autoscale(enable=True)
def printer(k): # Prints the iteration and y value at x = 10
print(str(k) + " " + str(y[3][max_count-1]) + "\n")
def plot1(): # Plots estimation 1 (blue) and actual equation 1 (red)
ax.clear()
line1, = ax.plot(u, y[3][:])
ax.plot(u, np.sin(u), 'tab:red')
return line1,
@jit(nopython=True, cache=True)
def f_p1(omega, u, k): # Equation 1, Laplace form
b = (omega + k * np.pi) / u
a = gamma
f1 = a * (1 / (a ** 2 + (b + 1) ** 2) + 1 / (a ** 2 + (b - 1) ** 2)) * np.cos(omega)
return f1
def closing(result, previous, k): # Checks for convergence. If so, adds each term to f_0 and ends process
if abs(result - previous) < max_err:
diff = abs(result - previous)
print("Equation converges to " + str(diff) + " with " + str(k) + " iterations." + "\n")
for i in range(max_count):
y[3][i] += f_0(i)
return 1
else:
print("Equation has not yet converged.\n")
return 0
def f_0(i): # Initial integral in the series. Added at end after closing() convergence test
x_0 = 2 * np.e ** (gamma * u[i]) / (np.pi * u[i]) * quad(
f_p1, 0, np.pi / 2, args=(u[i], 0))[0]
return x_0
def f_u(u): # Main algorithm. Here, the summation integrals iterate
k = 1 # Number of iterations
for i in range(max_count): # First overall series iteration (initial 1st)
y[0][i] = 2 * np.e ** (gamma * u[i]) / (np.pi * u[i]) * (-1) ** k * quad(
f_p1, -np.pi / 2, np.pi / 2, args=(u[i], k))[0]
for j in range(2000): # Iteration loop. Goes until closing() or k = ~2000 (~8000 total iterations)
if j > 0:
for i in range(max_count): # Sets the first iteration (out of 3 for Aitken's) equal to the previous Aitken's or the first iteration if j = 0 (1st)
y[0][i] = x_iter[i]
else:
k += 1
for i in range(max_count): # Second iteration for Aitken's (2nd)
y[1][i] = 2 * np.e ** (gamma * u[i]) / (np.pi * u[i]) * (-1) ** k * quad(
f_p1, -np.pi / 2, np.pi / 2, args=(u[i], k))[0]
k += 1
for i in range(max_count): # Third iteration for Aitken's (3rd)
y[2][i] = 2 * np.e ** (gamma * u[i]) / (np.pi * u[i]) * (-1) ** k * quad(
f_p1, -np.pi / 2, np.pi / 2, args=(u[i], k))[0]
for i in range(max_count): # Aitken's delta-squared method iteration using the previous 3 (4th)
y_denom[i] = (y[2][i] - y[1][i]) - (y[1][i] - y[0][i])
if abs(y_denom[i]) < epsilon:
print("Denominator too small to calculate. Exiting...\n")
return 9
y[3][i] = y[2][i] - ((y[2][i] - y[1][i]) ** 2) / y_denom[i]
k -= 1
printer(k)
plot1()
rand = random.randrange(0, max_count) # Setting random number for x value
# Comparison between y at random x in Aitken's vs the previous iteration. If close enough, triggers closing()
if abs(y[3][rand] - y[2][rand]) < err:
result = simps(y[3][:], u, dx=step) #Integrates Aitken's iteration (4th)
previous = simps(y[2][:], u, dx=step) #Integrates integration before Aitken's (3rd)
c1 = closing(result, previous, k)
if c1 == 1:
return 0
for i in range(max_count): # Setting current Aitken's iteration to first iteration
x_iter[i] = y[3][i]
return
if __name__ == '__main__':
# Run the algorithm and plot
f_u(u)
plot1()
end = datetime.datetime.now() # Record time end
print("Runtime: " + str(end - start))
# Plots final result
plt.show()
exit(0)
关于python - 将 linspace 向量发送到函数会使该向量在函数启动之前全部为零,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59505208/
我遇到了 np.linspace() 的问题,我不知道为什么它会这样。我的代码如下所示: x = linspace(0, 6, 3) print 'x = ', x # prints the
我正在尝试编写一个类似版本的 python 的 numpy.linspace 函数。 double linspace(int a, int b, int c){ double line[c];
如下所示: ? 1
我有一个像这样的 Pandas 数据框 a b c 0 0.5 10 7 1 1.0 6 6 2 2.0 1 7 3 2.5 6 -5 4 3.5 9
我想生成 0 到 1 之间均匀间隔的 50 个数字 首先,我尝试使用 numpy.arange(0,1,0.02),下面是我得到的输出。 [0. 0.02 0.04 0.06 0.08 0.1
我想生成一个 n x 3 矩阵,其中 n 是像素数(宽 * 高)。 x = linspace(-1, 1, width) y = linspace(-1, 1, height) r = 1.0 vie
在我的项目中,编译器提示以下(以及许多其他类似的)代码片段: Eigen::ArrayXf window = Eigen::ArrayXf::LinSpaced(2*M
我有一组想要执行的方程: x = np.linspace(0, 2, 3) y = np.linspace(x, x+2, 3) 然后我想用一个计算来填充二维数组: a = 2*x + y 例如,给定
我有一个带有直方图的函数,绘制如下: import matplotlib.pyplot as plt import numpy as np lin = np.linspace(min(foo), ma
我正在尝试在 for 循环中使用 linspace。我想要 0 到 10 之间的 0.5 间隔。看来 z_bin 正在正确执行。 我的问题:如何在 for 循环中正确使用 linspace 来代替注释
所以我对 linspace 有点问题。我想生成一个数字数组,例如: [0.000001, 0.00001, 0.0001 , 0.001 ,0 .01 , 0.1] 所以我尝试了以下代码: alpha
我希望有一个生成器函数,它返回一条线上的点,给定一个最小距离 k。这很简单,可以使用 numpy 完成,如下所示: points = np.linspace(start, end, k) 但是,我想生
这个问题已经有答案了: How to avoid floating point errors? [duplicate] (2 个回答) 已关闭 4 年前。 我正在尝试使用linspace等间隔闭区间。
使用 MATLAB,我想在数组中的每个点之间进行线性插值。 使用 interpolate 将以非线性方式进行。我想做的是类似于产生低通滤波器系数。 我想出了一个解决方案,但我想避免使用 for 循环:
我一直在研究一种在并行处理中反转拉普拉斯变换的算法(即同时积分 s 空间中的多个拉普拉斯函数),但我知道一个事实,即并行处理不是问题,因为实现此方法是为了解决问题。但问题仍然存在,本质上我的代码一遍又
这样写有什么好处吗 t = linspace(0,20,21) 结束 t = 0:1:20 ? 我理解前者产生一个向量,就像第一个一样。 谁能告诉我 linspace 在 t = 0:1:20 上有用
我对 python 很陌生,在使用 linspace 例程绘制高斯函数图时遇到困难。 (我不想使用 numpy)。 """plot a normalized gaussian function """
这个问题已经有答案了: Use of None in Array indexing in Python (2 个回答) 已关闭 7 年前。 我读过一段代码是这样的 x = np.linspace(0,
np.linspace(10**3, 10**6, num=5, dtype=np.int16) 产量 array([ 1000, -11394, -23788, 29354, 16960],
有人可以用 numpy.linspace 解释这个舍入问题吗? import numpy as np np.linspace(0, 1, 6) == np.around( np.linspace(0,
我是一名优秀的程序员,十分优秀!