- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
如何连接这些numpy
数组?
第一个 np.array
形状为 (5,4)
[[ 6487 400 489580 0]
[ 6488 401 492994 0]
[ 6491 408 489247 0]
[ 6491 408 489247 0]
[ 6492 402 499013 0]]
第二个np.array
,形状为(5,)
[ 16. 15. 12. 12. 17. ]
最终结果应该是
[[ 6487 400 489580 0 16]
[ 6488 401 492994 0 15]
[ 6491 408 489247 0 12]
[ 6491 408 489247 0 12]
[ 6492 402 499013 0 17]]
我尝试了np.concatenate([array1, array2])
但我收到此错误
ValueError:所有输入数组必须具有相同的维数
我做错了什么?
最佳答案
要使用np.concatenate
,我们需要将第二个数组扩展为2D
,然后沿axis=1
连接 -
np.concatenate((a,b[:,None]),axis=1)
或者,我们可以使用 np.column_stack
来处理它 -
np.column_stack((a,b))
示例运行 -
In [84]: a
Out[84]:
array([[54, 30, 55, 12],
[64, 94, 50, 72],
[67, 31, 56, 43],
[26, 58, 35, 14],
[97, 76, 84, 52]])
In [85]: b
Out[85]: array([56, 70, 43, 19, 16])
In [86]: np.concatenate((a,b[:,None]),axis=1)
Out[86]:
array([[54, 30, 55, 12, 56],
[64, 94, 50, 72, 70],
[67, 31, 56, 43, 43],
[26, 58, 35, 14, 19],
[97, 76, 84, 52, 16]])
如果b
是一个dtype=object
的1D
数组,形状为(1,)
,很可能所有数据都包含在其中的唯一元素中,我们需要在连接之前将其展平。为此,我们也可以对其使用np.concatenate
。这是一个示例运行来阐明这一点 -
In [118]: a
Out[118]:
array([[54, 30, 55, 12],
[64, 94, 50, 72],
[67, 31, 56, 43],
[26, 58, 35, 14],
[97, 76, 84, 52]])
In [119]: b
Out[119]: array([array([30, 41, 76, 13, 69])], dtype=object)
In [120]: b.shape
Out[120]: (1,)
In [121]: np.concatenate((a,np.concatenate(b)[:,None]),axis=1)
Out[121]:
array([[54, 30, 55, 12, 30],
[64, 94, 50, 72, 41],
[67, 31, 56, 43, 76],
[26, 58, 35, 14, 13],
[97, 76, 84, 52, 69]])
关于python - numpy 数组连接 : "ValueError: all the input arrays must have same number of dimensions",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59598047/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!