gpt4 book ai didi

python - 在python中计算表面拟合后3D偏差的均方根

转载 作者:太空宇宙 更新时间:2023-11-03 19:49:42 25 4
gpt4 key购买 nike

我的目标是确定一组 3D 数据点与 Python 中拟合抛物面之间的 3D 偏差(及其 RMS)。

从此开始:Paraboloid (3D parabola) surface fitting python ,我可以计算 RMS。如果我理解正确的话,误差和 RMS 是沿着 Z 轴计算的。是吗?

我尝试(没有成功)确定拟合曲面和数据点之间的 3D 偏差和 RMS,但我无法获得它们。请问有人有解决这个问题的建议吗?

import numpy as np
from scipy.optimize import curve_fit

# Initial guess parameters
p0 = [1.5,0.4,1.5,0.4,1]

# INPUT DATA
x = [0.4,0.165,0.165,0.585,0.585]
y = [.45, .22, .63, .22, .63]
z = np.array([1, .99, .98,.97,.96])

# FIT
def paraBolEqn(data,a,b,c,d,e):
x,y = data
return -(((x-b)/a)**2+((y-d)/c)**2)+e

data = np.vstack((x,y))
popt, _ = curve_fit(paraBolEqn,data,z,p0)

# Deviation and RMS along Z axis
modelPredictions = paraBolEqn(data, *popt)
absError = modelPredictions - z
RMSE = np.sqrt(np.mean(np.square(absError))) # Root Mean Squared Error along Z axis
print('RMSE (along Z axis):', RMSE)

# Deviation and RMS in 3D
# ??

最佳答案

这是一个图形化的 Python 曲面拟合器,使用您的数据和方程绘制 3D 散点图、3D 曲面图和等高线图。您应该能够使用鼠标单击并拖动并在 3 空间中旋转 3D 图以进行目视检查。请注意,您有 5 个数据点和 5 个方程参数,因此您得到了实际上完美的拟合 - RMSE 实际上为零,R 平方为 1.0,并且 scipy 代码在计算协方差矩阵时会发出警告。

scatter

surface

contour

import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt

graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels

# 3D contour plot lines
numberOfContourLines = 16

x = [0.4,0.165,0.165,0.585,0.585]
y = [.45, .22, .63, .22, .63]
z = [1, .99, .98,.97,.96]

# alias data to match previous example
xData = numpy.array(x, dtype=float)
yData = numpy.array(y, dtype=float)
zData = numpy.array(z, dtype=float)

# place the data in a single list
data = [xData, yData, zData]


def func(data,a,b,c,d,e):

# extract data from the single list
x = data[0]
y = data[1]
return -(((x-b)/a)**2+((y-d)/c)**2)+e


def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

matplotlib.pyplot.grid(True)
axes = Axes3D(f)

# extract data from the single list
x_data = data[0]
y_data = data[1]
z_data = data[2]

xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)

Z = func(numpy.array([X, Y]), *fittedParameters)

axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)

axes.scatter(x_data, y_data, z_data) # show data along with plotted surface

axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label

plt.show()
plt.close('all') # clean up after using pyplot or else there can be memory and process problems


def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)

# extract data from the single list
x_data = data[0]
y_data = data[1]
z_data = data[2]

xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)

Z = func(numpy.array([X, Y]), *fittedParameters)

axes.plot(x_data, y_data, 'o')

axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label

CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours

plt.show()
plt.close('all') # clean up after using pyplot or else there can be memory and process problems


def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

matplotlib.pyplot.grid(True)
axes = Axes3D(f)

# extract data from the single list
x_data = data[0]
y_data = data[1]
z_data = data[2]

axes.scatter(x_data, y_data, z_data)

axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')

plt.show()
plt.close('all') # clean up after using pyplot or else there can be memory and process problems



if __name__ == "__main__":
initialParameters = [1.5,0.4,1.5,0.4,1] # from the posting

# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)

ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)

print('fitted parameters', fittedParameters)

modelPredictions = func(data, *fittedParameters)

absError = modelPredictions - zData

SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)

关于python - 在python中计算表面拟合后3D偏差的均方根,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59919008/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com