- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个 p×p×n 张量。我想为每个 p-by-p 切片提取对角线元素。有没有人知道如何在不循环的情况下做到这一点?
谢谢。
最佳答案
Behold
永远强大的 bsxfun
对于 vectorizing MATLAB problems
使用 MATLAB's linear indexing
非常有效地完成这项任务-
diags = A(bsxfun(@plus,[1:p+1:p*p]',[0:n-1]*p*p))
使用 4 x 4 x 3
大小的输入数组运行示例 -
A(:,:,1) =
0.7094 0.6551 0.9597 0.7513
0.7547 0.1626 0.3404 0.2551
0.2760 0.1190 0.5853 0.5060
0.6797 0.4984 0.2238 0.6991
A(:,:,2) =
0.8909 0.1493 0.8143 0.1966
0.9593 0.2575 0.2435 0.2511
0.5472 0.8407 0.9293 0.6160
0.1386 0.2543 0.3500 0.4733
A(:,:,3) =
0.3517 0.9172 0.3804 0.5308
0.8308 0.2858 0.5678 0.7792
0.5853 0.7572 0.0759 0.9340
0.5497 0.7537 0.0540 0.1299
diags =
0.7094 0.8909 0.3517
0.1626 0.2575 0.2858
0.5853 0.9293 0.0759
0.6991 0.4733 0.1299
基准测试
这里有一些运行时测试将这种基于 bsxfun
的方法与 repmat + eye
based approach 进行了比较对于大数据量 -
***** Datasize: 500 x 500 x 500 *****
----------------------- With BSXFUN
Elapsed time is 0.008383 seconds.
----------------------- With REPMAT + EYE
Elapsed time is 0.163341 seconds.
***** Datasize: 800 x 800 x 500 *****
----------------------- With BSXFUN
Elapsed time is 0.012977 seconds.
----------------------- With REPMAT + EYE
Elapsed time is 0.402111 seconds.
***** Datasize: 1000 x 1000 x 500 *****
----------------------- With BSXFUN
Elapsed time is 0.017058 seconds.
----------------------- With REPMAT + EYE
Elapsed time is 0.690199 seconds.
关于matlab - 从张量的每个正面切片中提取对角线元素,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28402197/
我想矢量化以下代码: def style_noise(self, y, style): n = torch.randn(y.shape) for i in range(n.shape[
对于给定的二维张量,我想检索值为 1 的所有索引。我希望能够简单地使用 torch.nonzero(a == 1).squeeze(),它将返回张量([1, 3, 2])。但是,torch.nonze
如果 x 是 dtype torch.float 的 torch.Tensor 那么操作 x.item() 和 float(x)完全一样? 最佳答案 操作x.item() 和float(x) 是不一样
我正在尝试提取 n 点 3D 坐标和 b 批处理中的特定行。本质上,我的张量 T1 的形状为 b*n*3。我有另一个形状为 b * n 的 bool 张量 T2,指示需要获取 n 的哪些行。本质上我的
以下代码掩码很好 mask = targets >= 0 targets = targets[mask] 但是,当我尝试使用两个条件进行屏蔽时,它会给出 RuntimeError: Boolean v
我正在定义一个简单的 conv2d 函数来计算输入和内核(均为 2D 张量)之间的互相关,如下所示: import torch def conv2D(X, K): h = K.shape[0]
作为训练 CNN 的一部分,我正在使用数组 inputs包含 对象。我想轮换一个人一些随机度数的对象 x ,如下所示: def rotate(inputs, x): # Rotate inpu
我有一个索引列表和一个具有形状的张量: shape = [batch_size, d_0, d_1, ..., d_k] idx = [i_0, i_1, ..., i_k] 有没有办法用索引 i_0
假设我有张量 t = torch.tensor([1,2,3,4,5]) 我想使用相同大小的索引张量来拆分它,该张量告诉我每个元素应该进行哪个拆分。 indices = torch.tensor([0
我尝试从生成器构建一个张量,如下所示: >>> torch.tensor(i**2 for i in range(10)) Traceback (most recent call last): F
假设我有一个一维 PyTorch 张量 end_index长度为L。 我想构造一个 2D PyTorch 张量 T有 L 行,其中 T[i,j] = 2什么时候j < end_index[i]和 T[
我在 pytorch 中有一个张量 x 比方说形状 (5,3,2,6) 和另一个形状 (5,3,2,1) 的张量 idx,其中包含第一个张量中每个元素的索引。我想用第二个张量的索引对第一个张量进行切片
我有以下火炬张量: tensor([[-0.2, 0.3], [-0.5, 0.1], [-0.4, 0.2]]) 以及以下 numpy 数组:(如有必要,我可以将其转换为其他内
tf.data.Dataset的构造函数接受一个参数 variant_tensor ,这只是 documented as : A DT_VARIANT tensor that represents t
我有: inp = torch.randn(4, 1040, 161) 我还有另一个名为 indices 的张量值: tensor([[124, 583, 158, 529], [1
我有一个张量 inps ,其大小为 [64, 161, 1]我有一些新数据d大小为 [64, 161] .如何添加 d至inps这样新的大小是[64, 161, 2] ? 最佳答案 使用 .unsqu
我有张量 t = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) 和一个查询张量 q = torch.te
给定一个 3d 张量,说:batch x sentence length x embedding dim a = torch.rand((10, 1000, 96)) 以及每个句子的实际长度数组(或张
我想使用 [int, -1] 符号 reshape 张量(例如,压平图像)。但我事先并不知道第一个维度。一个用例是在大批量上进行训练,然后在较小的批量上进行评估。 为什么会出现以下错误:获取包含“_M
我有两个 torch 张量。一个形状为 [64, 4, 300],一个形状为 [64, 300]。我如何连接这两个张量以获得形状为 [64, 5, 300] 的合成张量。我知道用于此的 tensor.
我是一名优秀的程序员,十分优秀!