- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我收到以下错误:
ValueError:检查输入时出错:预期 flatten_input 有 4 个维度,但得到的数组形状为 (80, 80, 3)
Traceback (most recent call last):
File "/home/ubuntu/capstone/TFcaps.py", line 163, in <module>
validation_steps=total_val // batch_size
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 235, in fit
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 593, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 706, in _process_inputs
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 702, in __init__
x = standardize_function(x)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 684, in standardize_function
return dataset.map(map_fn, num_parallel_calls=dataset_ops.AUTOTUNE)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 1591, in map
self, map_func, num_parallel_calls, preserve_cardinality=True)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3926, in __init__
use_legacy_function=use_legacy_function)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3147, in __init__
self._function = wrapper_fn._get_concrete_function_internal()
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2395, in _get_concrete_function_internal
*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2389, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2703, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2593, in _create_graph_function
capture_by_value=self._capture_by_value),
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/func_graph.py", line 978, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3140, in wrapper_fn
ret = _wrapper_helper(*args)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3082, in _wrapper_helper
ret = autograph.tf_convert(func, ag_ctx)(*nested_args)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/impl/api.py", line 237, in wrapper
raise e.ag_error_metadata.to_exception(e)
ValueError: in converted code:
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py:677 map_fn
batch_size=None)
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py:2410 _standardize_tensors
exception_prefix='input')
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_utils.py:573 standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected flatten_input to have 4 dimensions, but got array with shape (80, 80, 3)
我的模型如下所示:
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(80, 80, 3)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(4)])
这些是我的图像形状:
Image shape: (80, 80, 3)
Label: [False False True False]
<TakeDataset shapes: ((80, 80, 3), (4,)), types: (tf.float32, tf.bool)>
这就是我编译模型的方式:
model.compile(optimizer=tf.keras.optimizers.Adam(lr=LR), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=["accuracy"])
这就是我的搭配:
history = model.fit(
train_data,
steps_per_epoch=total_train // batch_size,
epochs=epochs,
validation_data=val_data,
validation_steps=total_val // batch_size
)
如何解决这个问题?
最佳答案
在执行model.fit()
之前,将3维训练输入图像train_data[0]
转换为4维尺寸如下:
train_data[0] = np.reshape(train_data[0], ((-1, 80, 80, 3)))
同样,将训练输入标签 train_data[1]
也转换为二维,如下所示:
train_data[1] = np.reshape(train_data[1], ((-1, 4)))
还需要对验证数据val_data
的输入图像和标签执行类似的操作。
PS:上述解决方案假设 train_data[0]
和 train_data[1]
可用于索引输入训练图像和训练标签分别。如果不是,请修改索引/切片以访问这些元素,并根据需要将它们 reshape 为 4 维(或 2 维)。另外,我注意到 bool 值被用来表示 True/False 目标值。然而,为了训练模型,需要这些标签的数字表示。因此,您可能需要在训练之前使用 Keras 的 to_categorical()
( link here ) 将 bool 标签转换为 one-hot 编码表示。
希望这有帮助! :)
关于python - TensorFlow 中图像分类的输入/输出形状错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60143510/
我正在尝试使用 Pandas 和 scikit-learn 在 Python 中执行分类。我的数据集包含文本变量、数值变量和分类变量的混合。 假设我的数据集如下所示: Project Cost
我想要一种图形化且有吸引力的方式来表示二进制数据的列总和,而不是表格格式。我似乎无法让它发挥作用,尽管有人会认为这将是一次上篮。 数据看起来像这样(我尝试创建一个可重现的示例,但无法让代码填充 0 和
我有一个简单的类别模型: class Category(models.Model): name = models.CharField(max_length=200) slug = mo
我正在开发一个知识系统,当用户进入一道菜时,该系统可以返回酒。我的想法是根据用户的输入为每个葡萄酒类别添加分数,然后显示最适合的葡萄酒类别的前 3 个。例如,如果有人输入鱼,那么知识库中的所有红葡萄酒
我目前正在研究流失问题的预测模型。 每当我尝试运行以下模型时,都会收到此错误:至少一个类级别不是有效的 R 变量名称。这将在生成类概率时导致错误,因为变量名称将转换为 X0、X1。请使用可用作有效 R
如何对栅格重新分类(子集)r1 (与 r2 具有相同的尺寸和范围)基于 r2 中的以下条件在给定的示例中。 条件: 如果网格单元格值为 r2是 >0.5 ,保留>0.5中对应的值以及紧邻0.5个值的相
我想知道在 java 中进行以下分类的最佳方法是什么。例如,我们有一个简单的应用程序,其分类如下: 空气 -----电机类型 -----------平面对象 -----非电机型 -----------
这是一个非常基本的示例。但我正在做一些数据分析,并且不断发现自己编写非常类似的 SQL 计数查询来生成概率表。 我的表被定义为值 0 表示事件未发生,而值 1 表示事件确实发生。 > sqldf(
假设我有一组护照图像。我正在开展一个项目,我必须识别每本护照上的姓名,并最终将该对象转换为文本。 对于标签(或分类(我认为是初学者))的第一部分,每本护照上都有姓名,我该怎么做? 我可以使用哪些技术/
我有这张图片: 我想做的是在花和树之间对这张图片进行分类,这样我就可以找到图片中被树木覆盖的区域,以及被那些花覆盖的区域。 我在想这可能是某种 FFT 问题,但我不确定它是如何工作的。单个花的 FFT
我的数据集有 32 个分类变量和一个数值连续变量(sales_volume) 首先,我使用单热编码 (pd.get_dummies) 将分类变量转换为二进制,现在我有 1294 列,因为每一列都有多个
我正在尝试学习一些神经网络来获得乐趣。我决定尝试从 kaggle 的数据集中对一些神奇宝贝传奇卡进行分类。我阅读了文档并遵循了机器学习掌握指南,同时阅读了媒体以尝试理解该过程。 我的问题/疑问:我尝试
我目前正在进行推文情绪分析,并且有几个关于步骤的正确顺序的问题。请假设数据已经过相应的预处理和准备。所以这就是我将如何进行: 使用 train_test_split(80:20 比例)停止测试数据集。
一些上下文:Working with text classification and big sparse matrices in R 我一直在研究 text2vec 的文本多类分类问题。包装和 ca
数据 我有以下(简化的)数据集,我们称之为 df从现在开始: species rank value 1
我一直在尝试创建一个 RNN。我总共有一个包含 1661 个单独“条目”的数据集,每个条目中有 158 个时间序列坐标。 以下是一个条目的一小部分: 0.00000000e+00 1.9260968
我有一个关于机器学习的分类和回归问题。第一个问题,以下数据集 http://it.tinypic.com/view.php?pic=oh3gj7&s=8#.VIjhRDGG_lF 我们可以说,数据集是
我用1~200个数据作为训练数据,201~220个作为测试数据格式如下:3 个类(类 1、类 2、类 3)和 20 个特征 2 1:100 2:96 3:88 4:94 5:96 6:94 7:72
我有 2 个基于多个数字特征(例如 v1….v20)的输出类别(好和差)。 如果 v1、v2、v3 和 v4 为“高”,则该类别为“差”。如果 v1、v2、v3 和 v4 为“低”,则该类别为“好”
我遇到了使用朴素贝叶斯将文档分类为各种类别问题的问题。 实际上我想知道 P(C) 或我们最初掌握的类别的先验概率会随着时间的推移而不断变化。例如,对于类(class) - [音乐、体育、新闻] 初始概
我是一名优秀的程序员,十分优秀!