- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个通过粒子群优化 (PSO) 训练的 4 输入和 3 输出神经网络,使用 MATLAB 提供的 IRIS 数据库以均方误差 (MSE) 作为适应度函数。适应度函数被评估 50 次。实验是对特征进行分类。我有几个疑问
(1) 是否 PSO 迭代次数/代数 = 评估适应度函数的次数?
(2) 在多篇论文中我已经看到了 MSE vs 几代人的训练曲线被绘制出来。图中左边的图(a)是一个类似于NN的模型。它是一个 4 input-0 hidden layer-3 output cognitive map。图 (b) 是由同一个 PSO 训练的神经网络。本文的目的是展示 (a) 中新模型对 NN 的有效性。
但是他们提到实验是在 Cycles = 100 次,Generations = 300 时进行的。在这种情况下,(a) 和 (b) 的训练曲线应该是 MSE vs Cycles 而不是 MSE vs PSO 生成?例如,Cycle1:PSO 迭代 1-50 --> 结果(Weights_1、Bias_1、MSE_1、Classification Rate_1)。 Cycle2:PSO iteration 1- 50 -->Result(Weights_2,Bias_2, MSE_2, Classification Rate_2) 依此类推 100 个 Cycles。 (a)、(b) 中的 X 轴为什么不同,它们是什么意思?
(3) 最后,对于程序的每次独立运行(通过控制台独立运行 m 文件多次),我从未获得相同的分类率 (CR) 或相同的权重集。具体来说,当我第一次运行程序时,我得到了 W(权重)值和 CR =100%。当我再次运行 Matlab 代码程序时,我可能会得到 CR = 50% 和另一组权重!!如下图所示,
%Run1 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
0
Classification rate = 25
FinalWeightsBias =
-0.1156 0.2487 2.2868 0.4460 0.3013 2.5761
%Run2 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
1
Classification rate = 100
%Run3 (PSO generaions 1-50)
>>PSO_NN.m
Correlation =
-0.1260
Classification rate = 37.5
FinalWeightsBias =
-0.1726 0.3468 0.6298 -0.0373 0.2954 -0.3254
正确的方法应该是什么?那么,我最终应该采取哪个权重集,我怎么说网络已经训练好了呢?我知道进化算法由于其随机性而永远不会给出相同的答案,但是我如何确保网络已经过训练?有澄清义务。
最佳答案
关于matlab - 粒子群优化训练神经网络的概念问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22976904/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!