gpt4 book ai didi

matlab - 实值输入深度信念网络(RBM)的问题

转载 作者:太空宇宙 更新时间:2023-11-03 19:29:59 25 4
gpt4 key购买 nike

我正在尝试重新创建 Reducing the dimensionality of data with neural networks 中报告的结果自动编码 olivetti face dataset使用 MNIST 数字的改编版本 matlab code ,但遇到了一些困难。似乎无论我对纪元数、速率或动量进行多少调整,堆叠的 RBM 都会进入微调阶段并出现大量错误,因此在微调阶段无法改进太多。我在另一个实值数据集上也遇到了类似的问题。

对于第一层,我使用了一个学习率较小的 RBM(如论文中所述)

negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);

我非常有信心按照 supporting material 中的说明进行操作但我无法实现正确的错误。

有什么我想念的吗?请参阅下面我用于实值可见单元 RBM 以及整个深度训练的代码。其余代码可以找到here .

rbmvislinear.m:

epsilonw      = 0.001; % Learning rate for weights 
epsilonvb = 0.001; % Learning rate for biases of visible units
epsilonhb = 0.001; % Learning rate for biases of hidden units
weightcost = 0.0002;
initialmomentum = 0.5;
finalmomentum = 0.9;


[numcases numdims numbatches]=size(batchdata);

if restart ==1,
restart=0;
epoch=1;

% Initializing symmetric weights and biases.
vishid = 0.1*randn(numdims, numhid);
hidbiases = zeros(1,numhid);
visbiases = zeros(1,numdims);


poshidprobs = zeros(numcases,numhid);
neghidprobs = zeros(numcases,numhid);
posprods = zeros(numdims,numhid);
negprods = zeros(numdims,numhid);
vishidinc = zeros(numdims,numhid);
hidbiasinc = zeros(1,numhid);
visbiasinc = zeros(1,numdims);
sigmainc = zeros(1,numhid);
batchposhidprobs=zeros(numcases,numhid,numbatches);
end

for epoch = epoch:maxepoch,
fprintf(1,'epoch %d\r',epoch);
errsum=0;
for batch = 1:numbatches,
if (mod(batch,100)==0)
fprintf(1,' %d ',batch);
end


%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data = batchdata(:,:,batch);
poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));
batchposhidprobs(:,:,batch)=poshidprobs;
posprods = data' * poshidprobs;
poshidact = sum(poshidprobs);
posvisact = sum(data);

%%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
poshidstates = poshidprobs > rand(numcases,numhid);

%%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean
neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));
negprods = negdata'*neghidprobs;
neghidact = sum(neghidprobs);
negvisact = sum(negdata);

%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err= sum(sum( (data-negdata).^2 ));
errsum = err + errsum;

if epoch>5,
momentum=finalmomentum;
else
momentum=initialmomentum;
end;

%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
vishidinc = momentum*vishidinc + ...
epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);

vishid = vishid + vishidinc;
visbiases = visbiases + visbiasinc;
hidbiases = hidbiases + hidbiasinc;

%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
fprintf(1, '\nepoch %4i error %f \n', epoch, errsum);

end

dofacedeepauto.m:

clear all
close all

maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine.
numhid=2000; numpen=1000; numpen2=500; numopen=30;

fprintf(1,'Pretraining a deep autoencoder. \n');
fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch);

load fdata
%makeFaceData;

[numcases numdims numbatches]=size(batchdata);

fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid);
restart=1;
rbmvislinear;
hidrecbiases=hidbiases;
save mnistvh vishid hidrecbiases visbiases;

maxepoch=50;
fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen);
batchdata=batchposhidprobs;
numhid=numpen;
restart=1;
rbm;
hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases;
save mnisthp hidpen penrecbiases hidgenbiases;

fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2);
batchdata=batchposhidprobs;
numhid=numpen2;
restart=1;
rbm;
hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases;
save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;

fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen);
batchdata=batchposhidprobs;
numhid=numopen;
restart=1;
rbmhidlinear;
hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases;
save mnistpo hidtop toprecbiases topgenbiases;

backpropface;

谢谢你的时间

最佳答案

我真傻,我忘了更改反向传播微调脚本 (backprop.m)。必须将输出层(面部重建的地方)更改为实值单元。即

dataout = w7probs*w8;

关于matlab - 实值输入深度信念网络(RBM)的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3048170/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com