- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个线性不等式/等式系统要在 Matlab 中求解,我使用 linprog
.由于一些不等式很严格,我使用了一个非常小的常数 eps
按照说明获得严格包含 here
函数solve
下面在为 eps
提供值后求解系统.
function pj=solve(eps)
%Inequalities
%x(1)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)<=0;
%x(2)-x(6)-x(9)-x(12)-x(13)-x(15)-x(17)-x(18)-x(19)<=0;
%x(3)-x(7)-x(10)-x(12)-x(14)-x(16)-x(17)-x(18)-x(19)<=0;
%x(4)-x(8)-x(11)-x(13)-x(14)-x(15)-x(16)-x(18)-x(19)<=0;
%x(1)+x(2)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(6)-x(12)-x(13)-x(18)<=0;
%x(1)+x(3)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(7)-x(12)-x(14)-x(18)<=0;
%x(1)+x(4)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(8)-x(13)-x(14)-x(18)<=0;
%x(2)+x(3)-x(6)-x(9)-x(12)-x(13)-x(15)-x(17)-x(18)-x(19)-...
% x(7)-x(10)-x(14)-x(16)<=0;
%x(2)+x(4)-x(6)-x(9)-x(12)-x(13)-x(15)-x(17)-x(18)-x(19)-...
% x(8)-x(11)-x(14)-x(16)<=0;
%x(3)+x(4)-x(7)-x(10)-x(12)-x(14)-x(16)-x(17)-x(18)-x(19)-...
% x(8)-x(11)-x(13)-x(15)<=0;
%x(1)+x(2)+x(3)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(6)-x(12)-x(13)-x(18)-...
% x(7)-x(14)<=0;
%x(1)+x(2)+x(4)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(6)-x(12)-x(13)-x(18)-...
% x(8)-x(14)<=0;
%x(1)+x(3)+x(4)-x(5)-x(9)-x(10)-x(11)-x(15)-x(16)-x(17)-x(19)-...
% x(7)-x(12)-x(14)-x(18)-...
% x(8)-x(13)<=0;
%x(2)+x(3)+x(4)-x(6)-x(9)-x(12)-x(13)-x(15)-x(17)-x(18)-x(19)-...
% x(7)-x(10)-x(14)-x(16)-...
% x(8)-x(11)<=0;
%Equalities
%x(1)+x(2)+x(3)+x(4)=1;
%x(5)+x(6)+x(7)+x(8)+x(9)+x(10)+x(11)+x(12)+x(13)+x(14)+x(15)+x(16)+x(17)+x(18)+x(19)=1;
%I also want each component of x to be different from 1 and 0 (strictly included between 1 and 0 given the equalities constraints)
%x(1)>0 ---> x(1)>=eps ---> -x(1)<=-eps
%...
%x(19)>0
%x(1)<1 ---> x(1)<=1-eps
%...
%x(19)<1
%52 inequalities (14+19+19)
%2 equalities
%19 unknowns
A=[1 0 0 0 -1 0 0 0 -1 -1 -1 0 0 0 -1 -1 -1 0 -1;...
0 1 0 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 0 -1 -1 -1;...
0 0 1 0 0 0 -1 0 0 -1 0 -1 0 -1 0 -1 -1 -1 -1;...
0 0 0 1 0 0 0 -1 0 0 -1 0 -1 -1 -1 -1 0 -1 -1;...
1 1 0 0 -1 -1 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1;...
1 0 1 0 -1 0 -1 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1;...
1 0 0 1 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1;...
0 1 1 0 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1;...
0 1 0 1 0 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1;...
0 0 1 1 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;...
1 1 1 0 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;...
1 1 0 1 -1 -1 0 -1 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1;...
1 0 1 1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;...
0 1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1;...
-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1;...
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0;...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]; %52x19
b=[zeros(1,14) -eps*ones(1,19) (1-eps)*ones(1,19)]; %1x52
Aeq=[1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]; %2x19
beq=[1 1]; %1x2
f=zeros(1,19); %1x19
x=linprog(f,A,b,Aeq,beq);
if ~isempty(x)
pj=x;
else
pj=NaN;
end
我相信(但我不知道如何分析显示)是我放入 linprogr
中的不等式/等式函数内部的算法 solve
是这样的,即 Matlab 产生的解决方案将满足另一个不等式,如下所示:
clear
rng default
%solve system
p1=solve(unifrnd(0,0.05));
%solve system
p2=solve(unifrnd(0,0.05));
%solve system
p3=solve(unifrnd(0,0.05));
if ~isnan(p1) & ~isnan(p2) & ~isnan(p3) %#ok<AND2>
%LHS
lhs=(p1(2)+p1(3)+p1(4))*1*1+...
p1(1)*(p2(1)+p2(4))*1+...
p1(1)*p2(2)*(p3(2)+p3(3)+p3(4))+...
p1(1)*p2(3)*(p3(1)+p3(2)+p3(3));
%RHS
rhs=(1-(p1(5)+p1(9)+p1(10)+p1(11)+p1(15)+p1(16)+p1(17)+p1(19)))*...
1*...
1+...
... +
(p1(5)+p1(9)+p1(10)+p1(11)+p1(15)+p1(16)+p1(17)+p1(19))*...
(p2(5)+p2(8)+p2(11))*...
1+...
... +
(p1(5)+p1(9)+p1(10)+p1(11)+p1(15)+p1(16)+p1(17)+p1(19))*...
(p2(7)+p2(10)+p2(14)+p2(16))*...
((p3(5)+p3(9)+p3(10)+p3(17))+(p3(6)+p3(7)+p3(12)))+...
... +
(p1(5)+p1(9)+p1(10)+p1(11)+p1(15)+p1(16)+p1(17)+p1(19))*...
(p2(6)+p2(9)+p2(13)+p2(15))*...
((p3(8)+p3(13)+p3(14)+p3(18))+(p3(6)+p3(7)+p3(12)))+...
... +
(p1(5)+p1(9)+p1(10)+p1(11)+p1(15)+p1(16)+p1(17)+p1(19))*...
(p2(12)+p2(17)+p2(19))*...
(p3(6)+p3(7)+p3(12));
check=(lhs>=rhs); %I expect check to be 1
else
end
我相信解决方案p1,p2,p3
将交付check=1
.
问题:如前所述,我不知道如何解析显示;有没有办法产生令人满意的数值论证?或者,你能不能扼杀我的信仰并提供解决方案p1,p2,p3
送货 check=0
?
最佳答案
你可以做的是将问题从 19 个参数扩展到 3x19 = 57 个参数,编写一个计算 lhs 和 rhs 之间差异的函数,并尝试在给定约束条件下最小化该函数。如果低于零,则表示 rhs > lhs。扩展约束:
ACell = repmat({A}, 1, 3); % diagonal matrix with A repeated 3 times on diagonal
A = blkdiag(ACell{:}); % 156x57
b = [b b b]; % 1x156
AeqCell = repmat({Aeq}, 1, 3);
Aeq = blkdiag(AeqCell{:}); % 6x57
beq = [beq beq beq]; % 1x6
计算误差的函数:
function error = errorFun( p )
p1 = p(1:19);
p2 = p(20:38);
p3 = p(39:57);
if ~isnan(p1) & ~isnan(p2) & ~isnan(p3) %#ok<AND2>
lhs= (...);
rhs= (...);
error= lhs - rhs;
else
error= 1;
end
end
现在您可以使用一些优化工具来找到最小的 errorFun,例如 fmincon :
x = fmincon(@errorFun, zeros(57, 1), A, b, Aeq, beq, [], [], [], options);
我找到的解决方案是肯定的,这意味着您的假设应该是正确的。
关于matlab - Matlab : numerical arguments or counterexample? 中线性不等式/等式系统隐含的不等式,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46939502/
我正在尝试建立一个模型,该模型将根据是否存在某些组件(在我的情况下为流体端口)具有略微不同的方程。 如下代码将不起作用: parameter Boolean use_component=false;
首先采用,kludge 解决方案,sentinel 方法(您的程序必须不允许输入 sentinel 值): select coalesce(a, -2147483648) = coalesce(b,
我有一个类型族,它确定某物是否位于类型级列表的开头。 type family AtHead x xs where AtHead x (x ': xs) = True AtHead y
我试图找出为什么在下面的方法中,数组“8”中的最后一个值会满足“(8 & 7) == 0”的 where 子句。 public class Test { public static voi
我是 C 语言的初学者。我正在使用在线示例代码并尝试分析以下内容, int x = 0, y = 16; *x_ptr = &x 这是我要确保我在语法上理解的第二行。我刚刚遇到指针的概念,并试图从概念
我想知道geom_density()到底在做什么,所以我证明了图的合理性,以及是否有任何方法可以提取为绘制的每条曲线生成的函数或点。 谢谢 最佳答案 键入get("compute_group", gg
我试图用 Haskell 实现一个 Braun 树,定义如下: {-# LANGUAGE GADTs #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyK
==有什么区别和 === ? 松散到底是怎么做的==对比工作? 严格怎么做===对比工作? 什么是一些有用的例子? 最佳答案 ==之间的区别和 === 松散的区别==相等运算符和严格 ===相同的运算
==有什么区别和 === ? 松散到底是怎么做的==对比工作? 严格怎么做===对比工作? 什么是一些有用的例子? 最佳答案 ==之间的区别和 === 松散的区别==相等运算符和严格 ===相同的运算
在理解下面的代码中发生了什么时遇到问题。数组 c 和 d 的行为是我所期望的。但是 a 和 b 是怎么回事? (我也用普通的标量变量尝试过这个,在任何一种情况下都没有发生令人惊讶的事情。) 输出被复制
我正在尝试使用 Java Swing 为数学方程式创建一个 GUI 5((θ/β) - cos(2πθ/β)) . 最初我开始使用一个简单的余弦函数并创建了 GUI,它工作正常。这是我的余弦函数程序:
我正在尝试将这条曲线作为我目前正在开发的一款小游戏的升级系统的一部分。方程如下 f(x) = -e^-((-log(7)/100)*(100-x))+7 在python中可以定义为 f=lambda
我是一名优秀的程序员,十分优秀!