gpt4 book ai didi

arrays - 在 MATLAB 中分割向量

转载 作者:太空宇宙 更新时间:2023-11-03 19:08:56 25 4
gpt4 key购买 nike

我正在尝试优雅地拆分矢量。例如,

vec = [1 2 3 4 5 6 7 8 9 10]

根据另一个相同长度的 0 和 1 向量,其中 1 表示向量应该在何处拆分 - 或者更确切地说是剪切:

cut = [0 0 0 1 0 0 0 0 1 0]

为我们提供类似于以下内容的单元格输出:

[1 2 3] [5 6 7 8] [10]

最佳答案

解决方案代码

您可以使用 cumsum & accumarray一个有效的解决方案-

%// Create ID/labels for use with accumarray later on
id = cumsum(cut)+1

%// Mask to get valid values from cut and vec corresponding to ones in cut
mask = cut==0

%// Finally get the output with accumarray using masked IDs and vec values
out = accumarray(id(mask).',vec(mask).',[],@(x) {x})

基准测试

以下是在列出的三种最流行的解决此问题的方法中使用大量输入时的一些性能数据 -

N = 100000;  %// Input Datasize

vec = randi(100,1,N); %// Random inputs
cut = randi(2,1,N)-1;

disp('-------------------- With CUMSUM + ACCUMARRAY')
tic
id = cumsum(cut)+1;
mask = cut==0;
out = accumarray(id(mask).',vec(mask).',[],@(x) {x});
toc

disp('-------------------- With FIND + ARRAYFUN')
tic
N = numel(vec);
ind = find(cut);
ind_before = [ind-1 N]; ind_before(ind_before < 1) = 1;
ind_after = [1 ind+1]; ind_after(ind_after > N) = N;
out = arrayfun(@(x,y) vec(x:y), ind_after, ind_before, 'uni', 0);
toc

disp('-------------------- With CUMSUM + ARRAYFUN')
tic
cutsum = cumsum(cut);
cutsum(cut == 1) = NaN; %Don't include the cut indices themselves
sumvals = unique(cutsum); % Find the values to use in indexing vec for the output
sumvals(isnan(sumvals)) = []; %Remove NaN values from sumvals
output = arrayfun(@(val) vec(cutsum == val), sumvals, 'UniformOutput', 0);
toc

运行时

-------------------- With CUMSUM + ACCUMARRAY
Elapsed time is 0.068102 seconds.
-------------------- With FIND + ARRAYFUN
Elapsed time is 0.117953 seconds.
-------------------- With CUMSUM + ARRAYFUN
Elapsed time is 12.560973 seconds.

特殊情况:在您可能运行 1 的情况下,您需要修改下面列出的一些内容 -

%// Mask to get valid values from cut and vec corresponding to ones in cut
mask = cut==0

%// Setup IDs differently this time. The idea is to have successive IDs.
id = cumsum(cut)+1
[~,~,id] = unique(id(mask))

%// Finally get the output with accumarray using masked IDs and vec values
out = accumarray(id(:),vec(mask).',[],@(x) {x})

在这种情况下运行示例 -

>> vec
vec =
1 2 3 4 5 6 7 8 9 10
>> cut
cut =
1 0 0 1 1 0 0 0 1 0
>> celldisp(out)
out{1} =
2
3
out{2} =
6
7
8
out{3} =
10

关于arrays - 在 MATLAB 中分割向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29860008/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com