gpt4 book ai didi

python - 在 Gamma 射线图上使用healpy.anafast

转载 作者:太空宇宙 更新时间:2023-11-03 18:43:13 28 4
gpt4 key购买 nike

我有一个适合格式的 Gamma 射线图(具有表面亮度的图像)以及阿拉丁转换器输出的 .hpx 格式。

我希望计算角功率谱。如何创建一个可读的文件healpy.anafast?我的数据格式似乎错误 (TypeErrors)。

我尝试过的 Gamma 射线图像之一是费米银河漫反射。文件是一个名为 gll_iem_v02_P6_V11_DIFFUSE.fit 的公共(public) LAT 银河漫反射贴图,位于:

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

我在使用时粘贴了下面的代码,但它本质上是 astroml 上名为 plot_wmap_power_spectra 的脚本。 :

    """
WMAP power spectrum analysis with HealPy
----------------------------------------

This demonstrates how to plot and take a power spectrum of the WMAP data
using healpy, the python wrapper for healpix. Healpy is available for
download at the `github site <https://github.com/healpy/healpy>`_
"""
# Author: Jake VanderPlas <vanderplas@astro.washington.edu>
# License: BSD
# The figure is an example from astroML: see http://astroML.github.com
import numpy as np
from matplotlib import pyplot as plt

# warning: due to a bug in healpy, importing it before pylab can cause
# a segmentation fault in some circumstances.
import pylab
import healpy as hp
###
from astroML.datasets import fetch_wmap_temperatures
###

#------------------------------------------------------------
# Fetch the data
###
wmap_unmasked = fetch_wmap_temperatures(masked=False)

#PredictedSurfaceFluxFromModelMap = np.arange(hp.read_map('PredictedSurfaceFluxFromModelMap.hpx[1]'))
PredictedSurfaceFluxFromModelMap = hp.read_map('gll_iem_v02_p6_V11_DIFFUSE.fit',dtype=np.float,verbose=True)
#PredictedSurfaceFluxFromModelMap = hp.read_map('all.fits',dtype=np.float,verbose=True)
#cl_out = hp.read_cl('PredictedSurfaceFluxFromModelMap.hpx',dtype=np.float)#,verbose=True)
wmap_masked = fetch_wmap_temperatures(masked=True)
###
white_noise = np.ma.asarray(np.random.normal(0, 0.062, wmap_masked.shape))
len(cl_out)

#------------------------------------------------------------
# plot the unmasked map
fig = plt.figure(1)
#hp.mollview(wmap_unmasked, min=-1, max=1, title='Unmasked map',
# fig=1, unit=r'$\Delta$T (mK)')
########----------------
##hp.mollview(PredictedSurfaceFluxFromModelMap, min=-1, max=1, title='Unmasked map',
## fig=1, unit=r'$\Delta$T (mK)')
########----------------
#------------------------------------------------------------
# plot the masked map
# filled() fills the masked regions with a null value.
########----------------
#fig = plt.figure(2)
#hp.mollview(wmap_masked.filled(), title='Masked map',
# fig=2, unit=r'$\Delta$T (mK)')

########----------------
#------------------------------------------------------------
# compute and plot the power spectrum
########----------------
#cl = hp.anafast(wmap_masked.filled(), lmax=1024)
cl = hp.anafast(PredictedSurfaceFluxFromModelMap, lmax=1024)
#cl = cl_out
########----------------
ell = np.arange(len(cl))

cl_white = hp.anafast(white_noise, lmax=1024)

fig = plt.figure(3)
ax = fig.add_subplot(111)
ax.scatter(ell, ell * (ell + 1) * cl,
s=4, c='black', lw=0,
label='data')
ax.scatter(ell, ell * (ell + 1) * cl_white,
s=4, c='gray', lw=0,
label='white noise')

ax.set_xlabel(r'$\ell$')
ax.set_ylabel(r'$\ell(\ell+1)C_\ell$')
ax.set_title('Angular Power (not mask corrected)')
ax.legend(loc='upper right')
ax.grid()
ax.set_xlim(0, 1100)

plt.show()

最佳答案

I have uploaded your map also to Figshare ,将来可能会出现。

一旦您获得了 HEALPix 格式的 map ,就可以使用 healpy 轻松读取它:

import healpy as hp
m = hp.ma(hp.read_map("gll_iem_v02_p6_V11_DIFFUSE.hpx"))

掩码 NaN 像素:

m.mask = np.isnan(m)

绘制它:

hp.mollview(m, min=-1e-5, max=1e-5, xsize=2000)
title("gll_iem_v02_p6_V11_DIFFUSE")

Mollview

计算并绘制角功率谱:

plt.loglog(hp.anafast(m))

power spectrum

另请参阅 IPython 笔记本:http://nbviewer.ipython.org/7553252

关于python - 在 Gamma 射线图上使用healpy.anafast,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20080176/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com