- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
用于并行计算的 Joblib 对于 njob>1(njob=2 需要 12.6 秒完成)比 njob=1(1.3 秒完成)花费更多时间。我的系统是 mac OSX 10.9,内存为 16GB。我做错了什么吗?这是一个简单的演示代码:
from joblib import Parallel, delayed
def func():
for i in range(200):
for j in range(300):
yield i, j
def evaluate(x):
i=x[0]
j=x[1]
p=i*j
return p, i, j
if __name__ == '__main__':
results = Parallel(n_jobs=3, verbose=2)(delayed(evaluate)(x) for x in func())
res, i, j = zip(*results)
最佳答案
简短回答:Joblib 是一个多处理系统,为 3 个并发作业中的每一个启动新的 python 进程都会产生相当大的开销。因此,如果您添加更多作业,您的特定代码可能会变得甚至更慢。
有一些关于此的文档 here .
解决方法并不好:
也就是说,对于需要很长时间的函数,多处理通常是值得的。根据您的应用程序,这实际上是一个判断。请注意,函数中使用的每个变量都会复制到每个进程 - 变量复制在 python 中很少见,因此这可能会令人惊讶。因此,开销部分是显式或隐式传递的变量大小的函数(例如,通过使用全局变量)。
关于python - joblib并行计算时间,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/22648464/
我正在努力解决 joblib 问题。 我需要将推理应用程序推送到远程服务器,并且我还需要加载保存的标准缩放器,因为如果我尝试适应,我会收到内存不足异常。我无法对服务器进行物理更改,因为它是 sap c
我在 Docker 容器内的 Flask 应用程序中运行 joblib 以及由 supervisord 启动的 uWSGI(启动时启用线程)。 网络服务器启动显示如下错误: unable to loa
我正在尝试在 python 中使用并行计算包 joblib。我可以执行下面的例子并得到结果 Parallel(n_jobs=8)(delayed(sqrt)(i) for i in range(10)
这是我的代码: from math import sqrt from joblib import Parallel, delayed import multiprocessing def parall
我正在使用Python中joblib包中的Parallel函数。我只想使用此函数来处理我的函数之一,但不幸的是整个代码是并行运行的(除了其他函数)。 示例: from joblib import Pa
我正在努力学习 joblib模块作为 python 中内置 multiprocessing 模块的替代品。我习惯于使用 multiprocessing.imap 在可迭代对象上运行一个函数并返回结果。
我正在尝试使用 joblib 来并行化一个在函数上运行的循环。我希望显示函数的中间 print 命令,而不仅仅是函数的 return 值。 from joblib import Parallel, d
我想打乱 3D numpy 数组中的值,但前提是它们 > 0。 当我用单核运行我的函数时,它甚至比使用 2 个核快得多。这远远超出了创建新 python 进程的开销。我错过了什么? 以下代码输出: r
我的目标结构: 工具 model_maker.py 模特 模型在这里 我当前的代码,位于工具目录中 joblib.dump(pipeline, "../models/model_full_June20
是否可以使用 joblib.Memory 以线程安全的方式写入跨多个进程的公共(public)缓存。在什么情况下,这会失败或导致错误? 最佳答案 库首先写入临时文件,然后将临时文件移动到目的地。 So
我目前正在尝试实现 parallel for循环使用 joblib在 python 中 3.8.3 . 在 for 循环中,我想将一个类方法应用于一个类的实例,同时在另一个类中应用一个方法。 这是一个
我的代码看起来像这样: from joblib import Parallel, delayed # prediction model - 10s of megabytes on disk LARGE
from joblib import Parallel, delayed def func(v): temp.append(v) return temp = [] Parallel(n
有关于使用内存映射文件在 Joblib 中持久保存 Numpy 数组的良好文档。 在最近的版本中,Joblib(显然)会以这种方式自动保留和共享 Numpy 数组。 Pandas 数据帧也会被持久化,
我正在运行一个需要一段时间才能评估 16 次的函数。然而,所有这些运行都是相互独立的。因此我决定使用 joblib 来加速它。 Joblib 的工作方式就像它应该的那样并加快了速度,但我正在努力解决一
我正在使用 joblib 并行化我的 python 3.5 代码。 如果我这样做: from modules import f from joblib import Parallel, delaye
我正在使用 Random Forest Regressor python 的 scikit-learn 模块来预测一些值。我使用 joblib.dump 来保存模型。有 24 个 joblib.dum
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎是题外话,因为它缺乏足够的信息来诊断问题。 更详细地描述您的问题或include a min
我想问同样的问题 Python 3: does Pool keep the original order of data passed to map?对于作业库。例如: Parallel(n_jobs
我需要在使用 Joblib 并行的函数中生成随机数。但是,从内核生成的随机数是完全相同的。 目前我通过为不同的核心分配随机种子来解决这个问题。有什么简单的方法可以解决这个问题吗? 最佳答案 这是预料之
我是一名优秀的程序员,十分优秀!