- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个 Pandas DataFrame,其中索引是(注意频率:H)-
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2013-12-31 23:00:00]
Length: 26304, Freq: H, Timezone: None
有多列,但前几行(以及分散在各处的其他行)包含所有 NA 条目。如果我将其写入 HDF 文件:
hdfstore.put('/table', df, format='table', data_columns=True, append=False)
然后读回:
df = hdfstore['/table']
看看索引,我发现:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-11 04:00:00, ..., 2013-12-31 23:00:00]
Length: 24656, Freq: None, Timezone: None
请注意,Freq 现在为 None,而且行数减少了,开始日期时间也较晚。第一行现在是原始 DataFrame 的第一行,其中至少包含一个非 NA 列值。
首先,这种预期行为是由于 HDF5 格式的限制以及 DataFrame 的存储方式造成的,还是一个错误?
有没有一种干净的方法可以避免这种情况发生,或者我只需要在加载后“修复”索引。也不确定最好的方法是什么。
最佳答案
这是 0.13.1 中引入的一个选项(可能是 0.13.0),您可以在 put/append
上设置 dropna=False
以避免删除全 NaN 行。这样做是为了提高效率,因为大多数时候在存储面板时,您有很多全 NaN 行,但没有理由存储它们。
否则频率信息将被保留。请注意,如果您追加
,则多次追加后频率信息将不会被保留。
如果您需要重新推断频率(如果可能),您可以随时使用pd.infer_freq(an_index)
。通常,如果需要,这在任何情况下都会自动完成。
关于python - 写入 HDFStore 时能否保留 Pandas tseries DatetimeIndex 的频率?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23522023/
在 pandas datetimeindex 中,dayofweek和 weekday似乎是一样的。他们只是彼此的别名吗?我发现了这些功能 here 最佳答案 根据pandas源码定义的Datetim
到目前为止,我有 EdChum 提供的以下代码: In [1]: df = pd.DataFrame({'a': [None] * 6, 'b': [2, 3, 10, 3, 5, 8]}) df["
我有一个按日期时间索引的数据框。我正在尝试创建某种过滤器,它只提供包含特定时间的帧。 例如,所有包含“09:30”的帧 df.dtypes open float64 high
不规则时间序列 data存储在 pandas.DataFrame 中.一个 DatetimeIndex已经设置好了。我需要索引中连续条目之间的时间差。 我以为就这么简单 data.index.diff
如何将 DatetimeIndex 更改为像这样的简单数据框: month 0 2013-07-31 1 2013-08-31 2 2013-09-30 3 2013-10-3
我在 pandas 数据框中有多个以下格式的日期列表: col1 col2 1 [DatetimeInde
我有一个 DatetimeIndex 对象,它由两个日期组成,如下所示: import pandas as pd timestamps = pd.DatetimeIndex(['2014-1-1',
我有一个数据框,使用以下代码生成: time_index = pd.date_range(start=datetime(2013, 1, 1, 3), e
我想绘制一个 pandas 系列,其索引是不计其数的 DatatimeIndex。我的代码如下: import matplotlib.dates as mdates index = pd.Dateti
Pandas 在系列/数据帧上有一个 resample 方法,但似乎没有办法单独对 DatetimeIndex 进行重采样? 具体来说,我有一个每日 Datetimeindex,其中可能缺少日期,我想
我已将一组 Excel 文件中的文件名中的日期提取到 DateTimeIndex 对象列表中。我现在需要将每个提取的日期写入我从每个 Excel 工作表创建的数据框的新日期列。我的代码的工作原理是将新
我想计算 DateTimeIndex 中时间之间的时间差 import pandas as pd p = pd.DatetimeIndex(['1985-11-14', '1985-11-28', '
我有一个 pandas.DatetimeIndex ,例如: pd.date_range('2012-1-1 02:03:04.000',periods=3,freq='1ms') >>> [2012
我在单独的 pandas.dataframe 中有两个时间序列,第一个 - series1与第二个条目相比,条目较少且开始数据时间不同 - series2 : index1 = pd.date_ran
我在数据框中有一个带有 DatetimeIndex 的时间序列,如下所示: import pandas as pd dates= ["2015-10-01 00:00:00", "2
当我使用pandas.date_range()时,有时我的时间戳有很多我不想保留的毫秒数。 假设我... import pandas as pd dr = pd.date_range('2011-01
我有一个带有 DateTimeIndex 的 Pandas 数据框和一个名为 WEEKEND 的空列。 如果索引中的日期时间是周末,我想将该列的值设置为“YES”,以便生成的数据帧如下所示: TIME
我有一个包含 12 个值的数据框,我想将其转换为 DatetimeIndex 类型 months = df['date'] #e.g. '2016-04-01' idx = pd.date_range
我处理一个DataFrame,其索引是字符串,年月,例如: index = ['2007-01', '2007-03', ...] 但是,索引未满。例如缺少 2007-02。我想要的是使用完整索引重新
我一直被这样的问题困扰。我有一套客流量的观察。数据存储在.xlsx文件中,结构如下:观察日期、时间、车站名称、登机、下车。 我想知道如果我只需要日期时间的“时间”组件,是否可以从此类数据创建带有 Da
我是一名优秀的程序员,十分优秀!