- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有代码可以爬行目录中的每个文件并绘制遇到的每个 csv 文件。每个 CSV 都有一个格式为
的标题`Timestamp, P1rms (A), P2rms (A), P3rms (A), P4rms (A), P5rms (A), Vrms (V), P1 theta, P2 theta, P3 theta, P4 theta, P5 theta`.
Mon Sep 30 00:00:00 2013, 128, 128, 180, 177, 192, 43, 7, 7, 8, 8, 48
Mon Sep 30 00:00:01 2013, 127, 127, 182, 178, 193, 43, 8, 8, 8, 8, 49
# ect....
我正在开发一个 fft 可视化选项,当我 fft 数据集时遇到溢出错误。这是我的确切问题:
当我运行代码时:
#!/usr/bin/env python
from pandas import *
import matplotlib.pyplot as plt
import os
import sys
import platform
import numpy.fft as np
# name of plots folder
plotfold='plots'
# System specific info
if platform.system()=='Darwin':comsep="/"
else: comsep="\\"
# How many columns should I plot?
numcol=6
if len(sys.argv)<2:
print 'usage: ./canaryCrawler.py [-c] or [-f] rootdir'
quit()
if len(sys.argv)>2:
ylim=1500
root = sys.argv[2]
else:
ylim=1200
root = sys.argv[1]
for subdir, dirs, files in os.walk(root):
# plot each file
for file in files:
if str(file)[-4:]=='.csv':
print 'plotting '+str(file)+'...'
# load csv as data frame
df=pandas.io.parsers.read_csv(subdir+comsep+file)
for i in range(0,len(df.Timestamp)):
df.Timestamp[i] = datetime.strptime(df.Timestamp[i], '%a %b %d %H:%M:%S %Y')
# We only want the first 6 collumns
df = df.ix[:,0:numcol]
if len(sys.argv)>=2:
if sys.argv[1]=='-c' or sys.argv[1]=='-f':
plotfold='plots_Specialty'
df2 = df
df=pandas.DataFrame(df2.Timestamp)
df['Residence']=df2['P1rms (A)']+df2['P2rms (A)']
df['Specialty']=df2['P3rms (A)']+df2['P4rms (A)']
if sys.argv[1]=='-f':
df2['Residence']=np.fft(df['Residence'])
df2['Specialty']=np.fft(df['Specialty'])
df=df2
print 'Fourier Transformation Complete'
plotfold='plots_Specialty_fft'
# set up plot
plt.figure()
df.plot(df.Timestamp,alpha=0.6,linewidth=2.3) # add transparency to see overlapping colors
plt.tight_layout(pad=1.08)
plt.legend(loc='best') # add legend in non-intrusive location
plt.legend(loc=5,prop={'size':14}) #
plt.ylabel('Current')
plt.xlabel('Time')
plt.gcf().autofmt_xdate()
plt.gcf().set_size_inches(12.7,9.2)
plt.gca().set_ylim([0,ylim])
stamp = df.Timestamp[0]
day = datetime.strftime(stamp,'%a')
DOM=datetime.strftime(stamp,'%d')
month = datetime.strftime(stamp,'%b')
year = datetime.strftime(stamp,'%Y')
plt.title(subdir+' '+day+' '+month+' '+DOM+' '+year)
# keep plot
# check for existing plots folder,
# create one if it doesn't exist
if plotfold not in os.listdir(subdir):
print '** adding plots directory to ',subdir
os.mkdir(subdir+comsep+plotfold)
# save in plots directory
spsubs = str(subdir).split(comsep)
filnam=''
for piece in range(len(spsubs)-4,len(spsubs)-1):
filnam+='_'+spsubs[piece]
filnam+='_'+str(file)[:-4]
saveto=subdir+comsep+plotfold+comsep+filnam
print '**** saving plot to ',saveto
plt.savefig(saveto)
plt.close()
我收到此错误:
kilojoules$ ./canaryCrawler.py -f 35ca7/
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas-0.14.0-py2.7-macosx-10.9-x86_64.egg/pandas/io/excel.py:626: UserWarning: Installed openpyxl is not supported at this time. Use >=1.6.1 and <2.0.0.
.format(openpyxl_compat.start_ver, openpyxl_compat.stop_ver))
plotting 2014Aug04.csv...
Fourier Transformation Complete
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/numpy-1.8.1-py2.7-macosx-10.9-x86_64.egg/numpy/core/numeric.py:460: ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)
/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/tight_layout.py:225: UserWarning: tight_layout : falling back to Agg renderer
warnings.warn("tight_layout : falling back to Agg renderer")
**** saving plot to 35ca7/2014/Aug/plots_Specialty_fft/_Aug_35ca7_2014_2014Aug04
plotting 2014Aug05.csv...
Fourier Transformation Complete
**** saving plot to 35ca7/2014/Aug/plots_Specialty_fft/_Aug_35ca7_2014_2014Aug05
plotting 2014Aug07.csv...
Fourier Transformation Complete
**** saving plot to 35ca7/2014/Aug/plots_Specialty_fft/_Aug_35ca7_2014_2014Aug07
Traceback (most recent call last):
File "./canaryCrawler.py", line 97, in <module>
plt.savefig(saveto)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/pyplot.py", line 561, in savefig
return fig.savefig(*args, **kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/figure.py", line 1421, in savefig
self.canvas.print_figure(*args, **kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backend_bases.py", line 2220, in print_figure
**kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/backend_agg.py", line 505, in print_png
FigureCanvasAgg.draw(self)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/backend_agg.py", line 451, in draw
self.figure.draw(self.renderer)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/artist.py", line 55, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/figure.py", line 1034, in draw
func(*args)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/artist.py", line 55, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/axes.py", line 2086, in draw
a.draw(renderer)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/artist.py", line 55, in draw_wrapper
draw(artist, renderer, *args, **kwargs)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/lines.py", line 562, in draw
drawFunc(renderer, gc, tpath, affine.frozen())
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/lines.py", line 938, in _draw_lines
self._lineFunc(renderer, gc, path, trans)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/lines.py", line 978, in _draw_solid
renderer.draw_path(gc, path, trans)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/matplotlib/backends/backend_agg.py", line 145, in draw_path
self._renderer.draw_path(gc, path, transform, rgbFace)
OverflowError: Allocated too many blocks
我将matplotlibrc
中的agg.path.chunksize
参数指定为agg.path.chunksize:10000000
。仅当我运行 -f fft 选项时才会出现此错误。我怎样才能防止这个错误?
最佳答案
不确定,但尝试 pdf、svg 后端
#!/usr/bin/env python
from pandas import *
import matplotlib.pyplot as plt # Insert just before import matplotlib as mpl
mpl.use('pdf') # Insert just before import matplotlib as mpl
import matplotlib as mpl
# ['pdf', 'pgf', 'Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg',
# 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg',
# 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX']
# (...)
plt.savefig('svg.pdf') # Consider file extension (!)
关于python - pandas numpy matplotlib 溢出错误 : date value out of range,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27348875/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!