- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我的动物疾病数据很少。
df = pd.DataFrame(
[['S', 'A', 'b1', 'p1', '2014-10-19', 1],
['S', 'A', 'b1', 'p1', '2014-10-26', 3],
['S', 'A', 'b1', 'p2', '2014-10-26', 4],
['S', 'A', 'b2', 'p3', '2014-10-19', 1],
['S', 'B', 'b1', 'p1', '2014-11-02', 5],
['S', 'B', 'b1', 'p2', '2014-10-19', 7],
['S', 'B', 'b1', 'p2', '2014-10-26', 1],
['S', 'B', 'b1', 'p2', '2014-11-02', 2],
['S', 'B', 'b2', 'p2', '2014-11-02', 1],
['S', 'B', 'b2', 'p3', '2014-10-26', 2],
['S', 'B', 'b2', 'p3', '2014-11-02', 3],
['M', 'A', 'b1', 'p1', '2014-10-19', 6],
['M', 'A', 'b1', 'p1', '2014-11-02', 2],
['M', 'A', 'b1', 'p2', '2014-10-19', 1],
['M', 'A', 'b1', 'p2', '2014-10-26', 1],
['M', 'B', 'b2', 'p2', '2014-10-19', 3],
['M', 'B', 'b2', 'p3', '2014-10-26', 4],
['M', 'B', 'b2', 'p3', '2014-11-02', 1]],
columns = ["animal_type", "disease", "basin",
"plant", "week", "infected"])
df['week'] = pd.to_datetime(df['week'])
我想创建输出,使动物类型、疾病、流域和植物的每种组合都代表所有三周,以便连接到每周附加信息的另一个数据框。
期望的输出:
do = pd.DataFrame(
[['S', 'A', 'b1', 'p1', '2014-10-19', 1],
['S', 'A', 'b1', 'p1', '2014-10-26', 3],
['S', 'A', 'b1', 'p1', '2014-11-02', 0],
['S', 'A', 'b1', 'p2', '2014-10-19', 0],
['S', 'A', 'b1', 'p2', '2014-10-26', 4],
['S', 'A', 'b1', 'p2', '2014-11-02']0,
...
这个为所有星期创造值(value)的过程将使用具有不同疾病、流域等的其他数据集来完成,因此我需要使这个过程具有普遍性。
我尝试将 df 索引设置为“week”并应用日期时间 date_range。
weeks = pd.date_range('2014-10-13', '2014-11-02', name='week', freq="W")
df.reindex(weeks)
当我尝试此操作时,我收到错误:ValueError:无法从重复轴重新索引
我尝试创建一个多索引
df.set_index(['animal_type', 'disease', 'basin', "plant", "week"],
inplace=True)
但我不知道如何使用 date_range 重新索引 MultiIndex 中的周列。
如何填充数据集,以便动物类型、疾病、流域和植物的每个组合每周都以填充值 0 表示?
最佳答案
这是一个不同的外观。在较高的层次上,我执行的操作相当于交叉连接......
我的代码
import pandas as pd
### SET UP JOIN ###
#capture unique dates
weeks = df.week.unique()
#make dataframe from weeks
dfWeeks = pd.DataFrame(weeks, columns = ['week'])
#capture "key" columns from df and drop resulting duplicates
dfKeys = df[['animal_type', 'disease', 'basin', 'plant']].drop_duplicates()
#add dummy matching field for cross join
dfWeeks['key'] = 1
dfKeys['key'] = 1
### PERFORM CROSS JOIN ###
dfNew = pd.merge(dfKeys, dfWeeks, on = 'key', how = 'left')
#drop dummy matching field
dfNew.drop('key', axis = 1, inplace = True)
#left merge "infected" back on
dfNew = pd.merge(dfNew, df, on = ['animal_type', 'disease', 'basin', 'plant', 'week'], how = 'left')
#replace NaN w zero
dfNew.infected.fillna(0, inplace = True)
关于python - 如何填充稀疏的 Pandas DataFrame,以便每个标识符组合每周都用填充值 0 表示?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29477441/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!