- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试制作一些图表来说明 scikit-learn 中 RandomForestClassifier 和 ExtraTreeClassifier 之间的区别。我想我可能已经弄清楚了,但我不确定。这是我的代码,用于拟合虹膜数据集并绘制图表:
import numpy as np
from sklearn.datasets import load_iris
from sklearn.externals.six import StringIO
from sklearn import tree
import pydot
iris = load_iris()
X = iris.data
y = iris.target
clf = tree.ExtraTreeClassifier()
clf = clf.fit(iris.data, iris.target)
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
file_name = "et_iris.pdf"
graph.write_pdf(file_name)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
file_name = "rdf_iris.pdf"
graph.write_pdf(file_name)
生成的图表看起来是正确的,ET 图比决策 TreeMap “更密集”。
DecisionTreeClassifier 与 RandomForestClassifier 中的一棵树相同,ExtraTreeClassifier 与 ExtraTreeClassifier 中的一棵树相同,我是否正确?
有没有办法对实际 RDF 或 ET 分类器中的所有树执行此操作?我尝试在森林中使用 .estimators_ 但他们似乎没有导出方法。
最佳答案
export_graphviz
不是一个方法,它是一个函数。没有一棵树“拥有”它。您可以将其与estimators_
一起使用。您认为 ExtraTreeClassifier
是 ExtraTreesClassifier
中的一棵树,而 DecisionTreeClassifier
是 RandomForestClassifier
中的一棵树,这是正确的。然而,这并没有真正涵盖它,因为:
RandomForestClassifier
单独引导每棵树的数据集,ExtraTreesClassifier
不引导(默认情况下)。
max_features=n_features
默认情况下为单棵树,即所有特征都可以在每个拆分中使用。
关于python - scikit-learn ExtraTreeClassifier 和 RandomForestClassifier 的图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29548930/
由于某种原因,每当我运行 ensemble.RandomForestClassifier() 并使用 .predict_proba() 方法时,它都会返回一个形状为 [n_classes, n_sam
我正在测试这段代码。 df1 = df[['Group', 'Sector', 'Cat2', 'Cat3', 'Cat4', 'Cat5', 'Cat6', 'Industry', 'Market'
我正在使用一个在每次迭代时生成数据的环境。我想保留先前迭代中的模型并将新数据添加到现有模型中。 我想了解模型拟合的工作原理。它将使新数据与现有模型相匹配,还是会使用新数据创建新模型。 调用新数据的拟合
我编写了以下 Python 代码,用于在 UCI ML 存储库的 Forest CoverType 数据集上运行 RandomForestClassifier(使用默认参数设置)。然而,结果很差,准确
from sklearn.ensemble import RandomForestClassifier from sklearn import tree rf = RandomForestClassi
我正在尝试攻击我的随机森林分类器。 clf = RandomForestClassifier(max_features="sqrt", n_estimators=500, n_jobs=-1, ver
在 section 1.9.2.1 中的 scikit-learn 文档中(摘录如下),为什么随机森林的实现与 Breiman 的原始论文不同?据我所知,在聚合分类器的集合时,Breiman 选择了多
我使用以下代码可视化 RandomForestClassifier 的结果: X, y = make_blobs(n_samples=300, centers=4,
我是机器学习新手,我正在尝试使用 scikit RandomForestClassifier 对文本进行分类。我遇到的问题是我的测试数据结果与 sklearn 分类报告不匹配。训练集大约有 25k 个
我一直在使用 sklearn 的随机森林,并且尝试比较几个模型。然后我注意到即使使用相同的种子,随机森林也会给出不同的结果。我尝试了两种方法:random.seed(1234) 以及使用随机森林内置的
这是一个新手问题。 我想使用 sklearn 中的 RandomForestClassifier 训练一个 Random Forest。我有几个变量,但在这些变量中,我希望算法在它训练的每一棵树中确定
在机器学习方面,我是初学者,我无法解释我从第一个程序中获得的一些结果。这是设置: 我有一个书评数据集。这些书可以用大约 1600 本书中的任意数量的限定符来标记。评论这些书的人也可以用这些限定符来标记
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我正在 RandomForestClassifier 上进行网格搜索,我的代码一直在工作,直到我更改了功能,然后代码突然生成以下错误(在 classifier.fit 行) 我没有更改任何代码,只是将
我正在 RandomForestClassifier 上进行网格搜索,我的代码一直在工作,直到我更改了功能,然后代码突然生成以下错误(在 classifier.fit 行) 我没有更改任何代码,只是将
我使用 ml.classification.RandomForestClassifier 构建了随机森林模型。我试图从模型中提取预测概率,但我只看到了预测类而不是概率。根据这个issue link ,
我正在使用 Scikit RandomForestClassifier 对不平衡数据进行分类。目标类数据为“1”或“0”(99% 的值为 0)。 我想分配一个权重。我怎样才能做到这一点。 我在文档中发
如何访问单个树并保存/加载 RandomForestClassifier 对象? 我只想查看每棵树的结构以确定哪个特征是重要的。我想将经过训练的分类器对象保存在文件或数据库中。怎么做? 最佳答案 您基
我正在尝试训练一个决策树模型,保存它,然后在我以后需要时重新加载它。但是,我不断收到以下错误: This DecisionTreeClassifier instance is not fitted y
我一直在运行此 website 上显示的“平均降低精度”度量的实现: 在示例中,作者使用的是随机森林回归器 RandomForestRegressor,但我使用的是随机森林分类器 RandomFore
我是一名优秀的程序员,十分优秀!