- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个程序试图预测我一周内发送的每封电子邮件(因此,通常发送 7 封)的电子邮件转换。输出是 7 个不同的文件,其中包含每个客户的预测分数。串行运行这些可能需要接近 8 个小时,因此我尝试使用 multiprocessing
并行化它们。这很好地加快了速度,但我注意到,一个进程完成后,它似乎会保留其内存,直到没有剩余内存,并且其中一个进程在没有完成其任务的情况下被系统杀死。
我基于 the 'manual pool' example in this answer 编写了以下代码,因为由于内存限制,我需要限制立即启动的进程数量。我想要的是,当一个进程完成时,它会将其内存释放给系统,为下一个工作进程释放空间。
下面是处理并发的代码:
def work_controller(in_queue, out_list):
while True:
key = in_queue.get()
print key
if key == None:
return
work_loop(key)
out_list.append(key)
if __name__ == '__main__':
num_workers = 4
manager = Manager()
results = manager.list()
work = manager.Queue(num_workers)
processes = []
for i in xrange(num_workers):
p = Process(target=work_controller, args=(work,results))
processes.append(p)
p.start()
iters = itertools.chain([key for key in training_dict.keys()])
for item in iters:
work.put(item)
for p in processes:
print "Joining Worker"
p.join()
这是实际的工作代码,如果有任何帮助的话:
def work_loop(key):
with open('email_training_dict.pkl','rb') as f:
training_dict = pickle.load(f)
df_test = pd.DataFrame.from_csv(test_file)
outdict = {}
target = 'is_convert'
df_train = train_dataframe(key)
features = data_cleanse(df_train,df_test)
# MAIN PREDICTION
print 'Start time: {}'.format(datetime.datetime.now()) + '\n'
# train/test by mailer
X_train = df_train[features]
X_test = df_test[features]
y_train = df_train[target]
# run model fit
clf = imbalance.ImbalanceClassifier()
clf = clf.fit(X_train, y_train)
y_hat = clf.predict(X_test)
outdict[key] = clf.y_vote
print outdict[key]
print 'Time Complete: {}'.format(datetime.datetime.now()) + '\n'
with open(output_file,'wb') as f:
pickle.dump(outdict,f)
最佳答案
我假设,就像您链接的示例一样,您正在使用 Queue.Queue() 作为队列对象。这是一个阻塞队列,这意味着对 queue.get()
的调用将返回一个元素,或者等待/阻塞直到它可以返回一个元素。尝试将您的 work_controller
函数更改为以下内容:
def work_controller(in_queue, out_list):
while True: # when the queue is empty return
try:
key = in_queue.get(False) # add False to not have the queue block
except Queue.Empty:
return
print key
work_loop(key)
out_list.append(key)
虽然上述解决了阻塞问题,但它又引起了另一个问题。在线程生命周期开始时,in_queue 中没有项目,因此线程将立即结束。
为了解决这个问题,我建议您添加一个标志来指示是否可以终止。
global ok_to_end # put this flag in a global space
def work_controller(in_queue, out_list):
while True: # when the queue is empty return
try:
key = in_queue.get(False) # add False to not have the queue block
except Queue.Empty:
if ok_to_end: # consult the flag before ending.
return
print key
work_loop(key)
out_list.append(key)
if __name__ == '__main__':
num_workers = 4
manager = Manager()
results = manager.list()
work = manager.Queue(num_workers)
processes = []
ok_to_end = False # termination flag
for i in xrange(num_workers):
p = Process(target=work_controller, args=(work,results))
processes.append(p)
p.start()
iters = itertools.chain([key for key in training_dict.keys()])
for item in iters:
work.put(item)
ok_to_end = True # termination flag set to True after queue is filled
for p in processes:
print "Joining Worker"
p.join()
关于python - 如何从 multiprocessing.queue 中的 Process 释放内存?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/30767630/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!