- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我有一个很大的目录,我根据以下标准从中选择数据:
columns = ["System", "rp", "mp", "logg"]
catalog = pd.read_csv('data.txt', skiprows=1, sep ='\s+', names=columns)
# CUTS
i = (catalog.rp != -1) & (catalog.mp != -1)
new_catalog = pd.DataFrame(catalog[i])
print("{0} targets after cuts".format(len(new_catalog)))
当我执行上述削减时,代码工作正常。接下来,我想再添加一个剪切:我想选择所有具有 4.0 < logg < 5.0
的目标。 。然而,一些目标有 logg = -1
(这代表该值不可用)。幸运的是,我可以计算logg
从其他可用参数。这是我更新的剪辑:
# CUTS
i = (catalog.rp != -1) & (catalog.mp != -1)
if catalog.logg[i] == -1:
catalog.logg[i] = catalog.mp[i] / catalog.rp[i]
i &= (4 <= catalog.logg) & (catalog.logg <= 5)
但是,我收到一个错误: if catalog.logg[i] == -1:
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
有人可以解释一下我做错了什么以及如何解决它。谢谢
我的数据框如下所示:
Data columns:
System 477 non-null values
rp 477 non-null values
mp 477 non-null values
logg 477 non-null values
dtypes: float64(37), int64(3), object(3)None
System rp mp logg FeH FeHu FeHl Mstar Mstaru Mstarl
0 target-01 5196 24 24 0.31 0.04 0.04 0.905 0.015 0.015
1 target-02 5950 150 150 -0.30 0.25 0.25 0.950 0.110 0.110
2 target-03 5598 50 50 0.04 0.05 0.05 0.997 0.049 0.049
3 target-04 6558 44 -1 0.14 0.04 0.04 1.403 0.061 0.061
4 target-05 6190 60 60 0.05 0.07 0.07 1.194 0.049 0.050
....
[5 rows x 43 columns]
我理解的格式的代码应该是:
for row in range(len(catalog)):
parameter = catalog['logg'][row]
if parameter == -1:
parameter = catalog['mp'][row] / catalog['rp'][row]
if parameter > 4.0 and parameter < 5.0:
# select this row for further analysis
但是,我正在尝试以更简单和专业的方式编写我的代码。我不想使用for
环形。我该怎么做?
考虑以下小示例:
System rp mp logg
target-01 2 -1 2 # will NOT be selected since mp = -1
target-02 -1 3 4 # will NOT be selected since rp = -1
target-03 7 6 4.3 # will be selected since mp != -1, rp != -1, and 4 < logg <5
target-04 3.2 15 -1 # will be selected since mp != -1, rp != -1, logg = mp / rp = 15/3.2 = 4.68 (which is between 4 and 5)
最佳答案
你会得到错误,因为catalog.logg[i]不是一个标量,而是一个序列,所以你应该转向矢量化操作:
catalog.loc[i,'logg'] = catalog.loc[i,'mp']/catalog.loc[i,'rp']
这会就地修改 logg 列
至于编辑3:
rows=catalog.loc[(catalog.logg > 4) & (catalog.logg < 5)]
它将选择满足条件的行
关于python - 使用 pandas 选择数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33868598/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!