gpt4 book ai didi

python - 如何解决 PySpark 中的非法端口号?

转载 作者:太空宇宙 更新时间:2023-11-03 17:08:05 24 4
gpt4 key购买 nike

使用:OSX 10.11.2、SPARK 版本 1.5.2、Python 版本 2.7.10、iPython 4.0.1

从 iPython Notebook 的终端打开 SPARK,我使用以下命令:

IPYTHON=1 $SPARK_HOME/bin/pyspark

我的目标是并行化整数向量,然后对该向量应用 countfirsttake 函数。

我的工作流程如下(在 IPython 笔记本中打开 Spark 后):

rdd=sc.parallelize([1,2 ,3])
rdd.collect()

然后当我尝试像这样运行计数函数时,

rdd.count()

我收到以下错误:(请注意,我意识到错误的来源是非法端口号,但是我可以通过更改使用的端口号来帮助解决此错误。我怀疑错误源源自iPython 和 Spark 之间的交互,但环顾四周,it seems like the developers already addressed this error 。)

In [3]: rdd.count()
15/12/21 14:27:39 INFO SparkContext: Starting job: count at <ipython-input-3-a0443394e570>:1
15/12/21 14:27:39 INFO DAGScheduler: Got job 1 (count at <ipython-input-3-a0443394e570>:1) with 4 output partitions
15/12/21 14:27:39 INFO DAGScheduler: Final stage: ResultStage 1(count at <ipython-input-3-a0443394e570>:1)
15/12/21 14:27:39 INFO DAGScheduler: Parents of final stage: List()
15/12/21 14:27:39 INFO DAGScheduler: Missing parents: List()
15/12/21 14:27:39 INFO DAGScheduler: Submitting ResultStage 1 (PythonRDD[1] at count at <ipython-input-3-a0443394e570>:1), which has no missing parents
15/12/21 14:27:39 INFO MemoryStore: ensureFreeSpace(4200) called with curMem=2001, maxMem=555755765
15/12/21 14:27:39 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 4.1 KB, free 530.0 MB)
15/12/21 14:27:39 INFO MemoryStore: ensureFreeSpace(2713) called with curMem=6201, maxMem=555755765
15/12/21 14:27:39 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 2.6 KB, free 530.0 MB)
15/12/21 14:27:39 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:64049 (size: 2.6 KB, free: 530.0 MB)
15/12/21 14:27:39 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:861
15/12/21 14:27:39 INFO DAGScheduler: Submitting 4 missing tasks from ResultStage 1 (PythonRDD[1] at count at <ipython-input-3-a0443394e570>:1)
15/12/21 14:27:39 INFO TaskSchedulerImpl: Adding task set 1.0 with 4 tasks
15/12/21 14:27:39 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 4, localhost, PROCESS_LOCAL, 2071 bytes)
15/12/21 14:27:39 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 5, localhost, PROCESS_LOCAL, 2090 bytes)
15/12/21 14:27:39 INFO TaskSetManager: Starting task 2.0 in stage 1.0 (TID 6, localhost, PROCESS_LOCAL, 2090 bytes)
15/12/21 14:27:39 INFO TaskSetManager: Starting task 3.0 in stage 1.0 (TID 7, localhost, PROCESS_LOCAL, 2090 bytes)
15/12/21 14:27:39 INFO Executor: Running task 0.0 in stage 1.0 (TID 4)
15/12/21 14:27:39 INFO Executor: Running task 1.0 in stage 1.0 (TID 5)
15/12/21 14:27:39 INFO Executor: Running task 2.0 in stage 1.0 (TID 6)
15/12/21 14:27:39 INFO Executor: Running task 3.0 in stage 1.0 (TID 7)
15/12/21 14:27:39 ERROR Executor: Exception in task 2.0 in stage 1.0 (TID 6)
java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/12/21 14:27:39 ERROR Executor: Exception in task 0.0 in stage 1.0 (TID 4)
java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/12/21 14:27:39 ERROR Executor: Exception in task 3.0 in stage 1.0 (TID 7)
java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
15/12/21 14:27:39 ERROR Executor: Exception in task 1.0 in stage 1.0 (TID 5)
java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
odule named dateutil.tz
?615/12/21 14:27:39 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 4, localhost): java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

15/12/21 14:27:39 ERROR TaskSetManager: Task 0 in stage 1.0 failed 1 times; aborting job
15/12/21 14:27:39 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
15/12/21 14:27:39 INFO TaskSetManager: Lost task 2.0 in stage 1.0 (TID 6) on executor localhost: java.lang.IllegalArgumentException (port out of range:1315905645) [duplicate 1]
15/12/21 14:27:39 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
15/12/21 14:27:39 INFO TaskSetManager: Lost task 3.0 in stage 1.0 (TID 7) on executor localhost: java.lang.IllegalArgumentException (port out of range:1315905645) [duplicate 2]
15/12/21 14:27:39 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
15/12/21 14:27:39 INFO TaskSetManager: Lost task 1.0 in stage 1.0 (TID 5) on executor localhost: java.lang.IllegalArgumentException (port out of range:1315905645) [duplicate 3]
15/12/21 14:27:39 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool
15/12/21 14:27:39 INFO TaskSchedulerImpl: Cancelling stage 1
15/12/21 14:27:39 INFO DAGScheduler: ResultStage 1 (count at <ipython-input-3-a0443394e570>:1) failed in 0.537 s
15/12/21 14:27:39 INFO DAGScheduler: Job 1 failed: count at <ipython-input-3-a0443394e570>:1, took 0.564707 s
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-3-a0443394e570> in <module>()
----> 1 rdd.count()

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/pyspark/rdd.pyc in count(self)
1004 3
1005 """
-> 1006 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1007
1008 def stats(self):

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/pyspark/rdd.pyc in sum(self)
995 6.0
996 """
--> 997 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
998
999 def count(self):

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/pyspark/rdd.pyc in fold(self, zeroValue, op)
869 # zeroValue provided to each partition is unique from the one provided
870 # to the final reduce call
--> 871 vals = self.mapPartitions(func).collect()
872 return reduce(op, vals, zeroValue)
873

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/pyspark/rdd.pyc in collect(self)
771 """
772 with SCCallSiteSync(self.context) as css:
--> 773 port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
774 return list(_load_from_socket(port, self._jrdd_deserializer))
775

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in __call__(self, *args)
536 answer = self.gateway_client.send_command(command)
537 return_value = get_return_value(answer, self.gateway_client,
--> 538 self.target_id, self.name)
539
540 for temp_arg in temp_args:

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/pyspark/sql/utils.pyc in deco(*a, **kw)
34 def deco(*a, **kw):
35 try:
---> 36 return f(*a, **kw)
37 except py4j.protocol.Py4JJavaError as e:
38 s = e.java_exception.toString()

/Users/jason/spark-1.5.2-bin-hadoop2.6/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
298 raise Py4JJavaError(
299 'An error occurred while calling {0}{1}{2}.\n'.
--> 300 format(target_id, '.', name), value)
301 else:
302 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 4, localhost): java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1824)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1850)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1921)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:909)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:108)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:310)
at org.apache.spark.rdd.RDD.collect(RDD.scala:908)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:405)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalArgumentException: port out of range:1315905645
at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
at java.net.InetSocketAddress.<init>(InetSocketAddress.java:188)
at java.net.Socket.<init>(Socket.java:244)
at org.apache.spark.api.python.PythonWorkerFactory.createSocket$1(PythonWorkerFactory.scala:75)
at org.apache.spark.api.python.PythonWorkerFactory.liftedTree1$1(PythonWorkerFactory.scala:90)
at org.apache.spark.api.python.PythonWorkerFactory.createThroughDaemon(PythonWorkerFactory.scala:89)
at org.apache.spark.api.python.PythonWorkerFactory.create(PythonWorkerFactory.scala:62)
at org.apache.spark.SparkEnv.createPythonWorker(SparkEnv.scala:135)
at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:101)
at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:300)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
... 1 more

有什么想法吗?

最佳答案

pyspark 在启动 daemon.py 时读取 python std 开头的一些字节以获取工作端口值,也许您有一些配置向 std 添加了一些输出。

关于python - 如何解决 PySpark 中的非法端口号?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34402994/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com