gpt4 book ai didi

python - 将文本数据转换为可以在Python中清理的数组?

转载 作者:太空宇宙 更新时间:2023-11-03 17:08:05 25 4
gpt4 key购买 nike

我正在使用 arduino 和 python 创建用于 RFID 卡数据收集的代码。我已经研究出了如何将 arduino 串行输出传输到 Python 并将其保存到名为卡 ID 的文件中,这非常棒。

现在我需要清理数据,但我无法理解它。这里的数据(不明白这里的意图,FML):

Card UID: 0A 2E 45 35
PICC type: MIFARE 1KB
Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AccessBits
15 63 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
62 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
14 59 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
58 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
56 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
13 55 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
53 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
12 51 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
11 47 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
46 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
45 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
10 43 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
9 39 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
38 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
37 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
8 35 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
7 31 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
6 27 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
5 23 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
4 19 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
3 15 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
2 11 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
9 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
1 7 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
6 09 05 00 15 33 14 00 00 00 00 00 00 00 00 00 00 [ 0 0 0 ]
5 73 73 73 73 73 73 73 73 73 73 73 73 73 73 42 95 [ 0 0 0 ]
4 20 20 5A 76 69 65 64 72 69 73 73 73 73 73 73 73 [ 0 0 0 ]
0 3 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF [ 0 0 1 ]
2 73 73 73 73 73 73 73 73 73 73 73 73 73 73 42 95 [ 0 0 0 ]
1 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 [ 0 0 0 ]
0 0A 2E 45 35 54 88 04 00 85 00 B4 2E F0 BB 6A A8 [ 0 0 0 ]

如何将其转换为数组形状的等距文本,其中可以使用表格删除列和行?我只需要十六进制数据,现在它被解释为带有\n 的字符串。

最佳答案

我不太确定您需要什么,但似乎您想要一个二维列表,其中包含按顺序排列的列和行的十六进制数据。

如果确实如此,我会这样做:

data = """73 73 73 73  73 73 73 73  73 73 73 73  73 73 42 95  [ 0 0 0 ]
73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 [ 0 0 0 ]
0A 2E 45 35 54 88 04 00 85 00 B4 2E F0 BB 6A A8 [ 0 0 0 ]"""

lst = map(lambda x: x[:-11].replace(" "," ").split(" "),data.split("\n"))
print lst

逐步说明:

数据被分组为多行字符串。

map 是一个函数,可让您处理列表中相对于给定函数(map() 中的左参数)的列表中的所有元素。

喜欢:

lst = ["1", "2", "3", "4", "5"]
map(int, lst)

会给你一个整数列表,而不是字符串列表。等价于:

map(lambda x: int(x), lst)

如您所见,我们所做的就是定义一个函数来更改列表中的每个项目。

正如我在示例中所做的那样,我通过用 [:-11] 剪切末尾来更改每一行。这就是我使用map函数的原因,当然你可以使用for循环轻松完成。如果您需要有关我的解决方案中 split() 的解释,请提及。

这给了你;

[['73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '42', '95'],
['73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73', '73'],
['0A', '2E', '45', '35', '54', '88', '04', '00', '85', '00', 'B4', '2E', 'F0', 'BB', '6A', 'A8']]

现在您可以通过列和行操作访问数据并更改它。

如果这不是您需要的,可能是因为您没有提供有关您需要的详细信息,如果您可以提供具体细节,我当然可以提供更多帮助。

关于python - 将文本数据转换为可以在Python中清理的数组?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34403536/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com