gpt4 book ai didi

python - gCentroid (rgeos) R 与实际质心(Python 中)

转载 作者:太空宇宙 更新时间:2023-11-03 16:52:40 24 4
gpt4 key购买 nike

总结:我认为在 R 中使用 gCentroid 会返回一组点的质心,但是我意识到由于某种原因它实际上返回几何平均值而不是质心

我想复制我在 R 中所做的质心计算:

gCentroid {rgeos}

这些点的质心:

34.7573,    -86.678606  
38.30088, -76.520266
38.712147, -77.158616
39.704905, -84.126463

...使用 r 脚本...

require(rgdal)
require(rgeos)

no_am_eq_co <- "+proj=eqdc +lat_0=0 +lon_0=0 +lat_1=20 +lat_2=60 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
wgs84 <- "+proj=longlat +datum=WGS84"

df <- as.data.frame(list(c(34.7573,
38.30088,
38.712147,
39.704905),
c(-86.678606,
-76.520266,
-77.158616,
-84.126463)))

df$Name <- "points_A"
colnames(df) <- c("lat", "lon", "Name")

# FROM: Coordinates are geographic latitude/longitudes
coordinates(df) <- c("lon", "lat")
proj4string(df) <- CRS(wgs84)

# TO: Project into North America Equidistant Conic
df <- spTransform(df, CRS(no_am_eq_co))

# Get centroids
ctrs <- lapply(unique(df$Name),
function(x) gCentroid(SpatialPoints(df[df$Name==x,])))
ctrsout <- setNames( ctrs , unique(df$Name ) )

# Create data frame
df <- do.call(rbind, lapply(ctrsout, data.frame, stringsAsFactors=FALSE))
coordinates(df) <- c("x", "y")
proj4string(df) <- CRS(no_am_eq_co)
df <- as.data.frame(spTransform(df, CRS(wgs84)))
names(df) <- c("longitude", "latitude")

print(df$latitude)
print(df$longitude)

来到:

37.94873834, -81.18378815

我在 python 中构建了以下示例 - 我想使用以下方法复制计算:

enter image description here

enter image description here

enter image description here

import numpy as np
from pyproj import Proj, transform

# Using: http://www.spatialreference.org/ref/esri/102010/ we get the Proj4js format
na_eq_co = "+proj=eqdc +lat_0=0 +lon_0=0 +lat_1=20 +lat_2=60 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
wgs84 = "+proj=longlat +datum=WGS84"

def proj_arr(points,proj_from,proj_to):
inproj = Proj(proj_from)
outproj = Proj(proj_to)
func = lambda x: transform(inproj,outproj,x[0],x[1])
return np.array(list(map(func, points)))

def get_polygon_centroid(polygon):
#https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon
pol = np.array(polygon)
if np.any(pol[-1] != pol[0]):
pol = np.append(pol,[pol[0]], axis=0)
pol_area = get_polygon_area(pol)
x = pol[:,0]
y = pol[:,1]
Cx = np.sum((x[:-1] + x[1:]) * ((x[:-1] * y[1:]) - (y[:-1] * x[1:]))) / (6. * pol_area)
Cy = np.sum((y[:-1] + y[1:]) * ((x[:-1] * y[1:]) - (y[:-1] * x[1:]))) / (6. * pol_area)
return np.array([Cx, Cy])

def get_polygon_area(polygon):
pol = np.array(polygon)
x = pol[:,0]
y = pol[:,1]
return np.sum( (x[:-1] * y[1:]) - (y[:-1] * x[1:]) ) / 2

def get_polygon_mean(polygon):
pol = np.array(polygon)
x = pol[:,0]
y = pol[:,1]
return np.array([np.mean(x),np.mean(y)])

def run_test(points):
points = points[:,::-1] #Flip-axis (so that longitude x-axis, latitude y-axis)
points_proj = proj_arr(points,wgs84,na_eq_co)

centroid_proj = get_polygon_centroid(points_proj)
mean_proj = get_polygon_mean(points_proj)

centroid = proj_arr([centroid_proj],na_eq_co,wgs84)
mean = proj_arr([mean_proj],na_eq_co,wgs84)
return (centroid[:,::-1][0], mean[:,::-1][0])

if __name__ == '__main__':
my_points = np.array([[34.7573,-86.678606],
[38.30088,-76.520266],
[38.712147,-77.158616],
[39.704905,-84.126463]])

test = run_test(my_points)
print("Centroid calculation: {0}\nMean calculation {1}".format(test[0],test[1]))

由此我得到:

37.72876321 -82.35113685  

不是:

37.94873834,-81.18378815 

经过进一步挖掘,我添加了一个函数,给出几何平均值:

Centroid calculation: [ 37.72876321 -82.35113685]
Mean calculation [ 37.94873834 -81.18378815]

我意识到,由于某种原因,gCentroid 似乎正在计算几何平均值而不是特征质心(我添加了一个均值函数,您可以看到它与 R 结果匹配)

编辑:

我认为原因可能是:因为我有一组点,而不是通过它们拟合随机多边形(就像示例中的我一样),甚至是凸包,然后取其质心,该命令将如果数据类型为“点”,则默认为平均值计算。所以我明确地向它传递了一个多边形:

x = readWKT(paste("POLYGON((-6424797.94257892  7164920.56353916,
-5582828.69570672 6739129.64644454,
-5583459.32266293 6808624.95123077,
-5855637.16642608 7316808.01148585,
-5941009.53089084 7067939.71641507,
-6424797.94257892 7164920.56353916))"))

python_cent = readWKT(paste("POINT(-5941009.53089084 7067939.71641507)"))
r_cent = gCentroid(x)

plot(x)
plot(r_cent,add=T,col='red')
plot(python_cent, add=T,col='green')

Python 质心在哪里:

centroid = get_polygon_centroid(np.array([[-6424797.94257892,  7164920.56353916],
[-5582828.69570672, 6739129.64644454],
[-5583459.32266293, 6808624.95123077],
[-5855637.16642608, 7316808.01148585],
[-6424797.94257892, 7164920.56353916]]))

然后将其质心绘制为红色(-5875318 7010915),然后将同一多边形(使用Python)上的质心绘制为绿色(-5941009 7067939)以及蓝色的简单平均值 (-5974304 7038880):

enter image description here

最佳答案

事实证明:如果提供了一组“点”,那么该命令将自动为您提供投影坐标的平均值,而不是通过这些点猜测多边形或生成凸包。

但是,如果你提供一个多边形,那么你会得到一个质心(与 python 脚本相同) - 在我的 python 示例中,我缺少一个坐标:

centroid = get_polygon_centroid(np.array([[-6424797.94257892,  7164920.56353916],
[-5582828.69570672, 6739129.64644454],
[-5583459.32266293, 6808624.95123077],
[-5855637.16642608, 7316808.01148585],
[-5941009.53089084, 7067939.71641507],
[-6424797.94257892, 7164920.56353916]]))
#polygon closed
#[-5875317.84402261 7010915.37286505]

所以运行这个 R 脚本:

x = readWKT(paste("POLYGON((-6424797.94257892  7164920.56353916,
-5582828.69570672 6739129.64644454,
-5583459.32266293 6808624.95123077,
-5855637.16642608 7316808.01148585,
-5941009.53089084 7067939.71641507,
-6424797.94257892 7164920.56353916))"))

python_cent = readWKT(paste("POINT(-5875317.84402261 7010915.37286505)"))
r_cent = gCentroid(x)

plot(x)
plot(r_cent,add=T,col='red', pch = 0)
plot(python_cent, add=T,col='green', pch = 1)

一切都很匹配:

enter image description here

我在我的 blog 上添加了更多信息如果有兴趣的话。

关于python - gCentroid (rgeos) R 与实际质心(Python 中),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35720614/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com