- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我正在尝试获取 exp
稀疏 theano 变量中的非零元素。我有当前的代码:
A = T.matrix("Some matrix with many zeros")
A_sparse = theano.sparse.csc_from_dense(A)
我正在尝试执行与以下 numpy 语法等效的操作:
mask = (A_sparse != 0)
A_sparse[mask] = np.exp(A_sparse[mask])
但 Theano 不支持 !=
面具还没。 (并且 (A_sparse > 0) | (A_sparse < 0)
似乎也不起作用。)
我怎样才能实现这个目标?
最佳答案
Theano 对稀疏矩阵的支持并不完整,因此有些事情很难实现。在这种特殊情况下,您可以使用theano.sparse.structed_exp(A_sparse)
,但我尝试在下面更笼统地回答您的问题。
比较
在 Theano 中,人们通常会使用此处描述的比较运算符:http://deeplearning.net/software/theano/library/tensor/basic.html
例如,可以编写 T.neq(A, 0)
,而不是 A != 0
。对于稀疏矩阵,必须使用 theano.sparse 中的比较运算符。两个运算符都必须是稀疏矩阵,并且结果也是稀疏矩阵:
mask = theano.sparse.neq(A_sparse, theano.sparse.sp_zeros_like(A_sparse))
修改子张量
为了修改矩阵的一部分,可以使用theano.tensor.set_subtensor
。对于密集矩阵,这将起作用:
indices = mask.nonzero()
A = T.set_subtensor(A[indices], T.exp(A[indices]))
请注意,Theano 没有单独的 bool 类型(掩码是零和一),因此必须首先调用 nonzero()
来获取非零元素的索引。此外,这不适用于稀疏矩阵。
对非零稀疏元素进行操作
Theano 提供稀疏操作,据说这些操作是结构化的并且仅对非零元素进行操作。看: http://deeplearning.net/software/theano/tutorial/sparse.html#structured-operation
更准确地说,它们对稀疏矩阵的 data
属性进行操作,与元素的索引无关。此类操作实现起来很简单。请注意,结构化操作将对 data
数组中的所有值进行操作,也包括那些显式设置为零的值。
关于python - Theano:对稀疏矩阵的非零元素进行运算,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36043717/
我在服务器上 checkout 了一个 git 存储库。该存储库过去在根目录下包含所有相关文件,但我必须进行一些更改,现在我有两个文件夹,src 和 dist,我想跟踪这两个文件夹. 我遇到的问题是,
我很难弄清楚 VkDescriptorSetLayoutBinding::binding 的任何用例,这是结构: struct VkDescriptorSetLayoutBinding { u
Python中能否有效获取稀疏向量的范数? 我尝试了以下方法: from scipy import sparse from numpy.linalg import norm vector1 = spa
我正在尝试找出为什么这段代码不对数组进行排序... 任意向量。 x = array([[3, 2, 4, 5, 7, 4, 3, 4, 3, 3, 1, 4, 6, 3, 2, 4, 3, 2]])
有谁知道如何压缩(编码)稀疏 vector ?稀疏 vector 表示有许多“0”的 1xN 矩阵。 例如 10000000000001110000000000000000100000000 上面是稀
我使用稀疏高斯过程进行 Rasmussen 回归。[http://www.tsc.uc3m.es/~miguel/downloads.php][1] 预测平均值的语法是: [~, mu_1, ~, ~
我在朴素贝叶斯分类器中使用 Mahout API。其中一个功能是 SparseVectorsFromSequenceFiles虽然我已经尝试过旧的谷歌搜索,但我仍然不明白什么是稀疏 vector 。最
我正在尝试将JavaScript稀疏数组映射到C#表示形式。 建议这样做的方法是什么? 它正在考虑使用一个字典,该字典包含在原始数组中包含值的原始词列表。 还有其他想法吗? 谢谢! 最佳答案 注意 针
如果我想求解一个完整上三角系统,我可以调用linsolve(A,b,'UT')。然而,这目前不支持稀疏矩阵。我该如何克服这个问题? 最佳答案 UT 和 LT 系统是最容易解决的系统之一。读一读on t
我有一个带有 MultiIndex 的 Pandas DataFrame。 MultiIndex 的值在 (0,0) 到 (1000,1000) 范围内,该列有两个字段 p 和 q. 但是,DataF
我目前正在实现一个小型有限元模拟。使用 Python/Numpy,我正在寻找一种有效的方法来创建全局刚度矩阵: 1)我认为应该使用coo_matrix()从较小的单元刚度矩阵创建稀疏矩阵。但是,我可以
a , b是 1D numpy ndarray与整数数据类型具有相同的大小。 C是一个 2D scipy.sparse.lil_matrix . 如果索引[a, b]包含重复索引,C[a, b] +=
我有一个大的、连通的、稀疏的邻接表形式的图。我想找到两个尽可能远的顶点,即 diameter of the graph以及实现它的两个顶点。 对于不同的应用程序,我对无向和有向情况下的这个问题都很感兴
上下文:我将 Eigen 用于人工神经网络,其中典型维度为每层约 1000 个节点。所以大部分操作是将大小为 ~(1000,1000) 的矩阵 M 与大小为 1000 的 vector 或一批 B v
我有一些大小合适的矩阵 (2000*2000),我希望在矩阵的元素中有符号表达式 - 即 .9**b + .8**b + .7**b ... 是一个元素的例子。矩阵非常稀疏。 我通过添加中间计算来创建
在 R 或 C++ 中是否有一种快速填充(稀疏)矩阵的方法: A, B, 0, 0, 0 C, A, B, 0, 0 0, C, A, B, 0 0, 0, C, A, B 0, 0, 0, C, A
我有一个大的稀疏 numpy/scipy 矩阵,其中每一行对应于高维空间中的一个点。我想进行以下类型的查询: 给定一个点P(矩阵中的一行)和一个距离epsilon,找到与epsilon距离最大的所有点
假设我有一个 scipy.sparse.csr_matrix 代表下面的值 [[0 0 1 2 0 3 0 4] [1 0 0 2 0 3 4 0]] 我想就地计算非零值的累积和,这会将数组更改为:
我了解如何在 Git 中配置稀疏 checkout ,但我想知道是否可以消除前导目录。例如,假设我有一个 Git 存储库,其文件夹结构如下: 文件夹1/foo 文件夹2/foo/bar/stuff 文
根据 this thread , Git 中的排除 sparse-checkout feature应该实现。是吗? 假设我有以下结构: papers/ papers/... presentations
我是一名优秀的程序员,十分优秀!