- android - 多次调用 OnPrimaryClipChangedListener
- android - 无法更新 RecyclerView 中的 TextView 字段
- android.database.CursorIndexOutOfBoundsException : Index 0 requested, 光标大小为 0
- android - 使用 AppCompat 时,我们是否需要明确指定其 UI 组件(Spinner、EditText)颜色
我使用以下代码在 scikit-tensor 中进行 parafac 分解。此代码是 scikit-tensor 的示例。
from sktensor import dtensor, cp_als, parafac2, tucker_hooi
import numpy
import sktensor
T=dtensor(numpy.arange(100).reshape(2, 5,10))
print (type(T))
P, F, D, A, fit, itr, exectimes = parafac2.parafac2(T, 3, init=3, ma_iter=5, conv= 4)
当我运行此代码时,输出是...
Traceback (most recent call last):
File "C:/Users/meghdad/PycharmProjects/tensorInPython/dtensor1.py", line 17, in <module>
P, F, D, A, fit, itr, exectimes = parafac2.parafac2(T, 3, init=3, ma_iter=5, conv= 4)
File "C:\Anaconda3\lib\site-packages\scikit_tensor-0.1-py3.5.egg\sktensor\parafac2.py", line 50, in parafac2
File "C:\Anaconda3\lib\site-packages\scikit_tensor-0.1-py3.5.egg\sktensor\parafac2.py", line 113, in __init
UnboundLocalError: local variable 'F' referenced before assignment
我该如何解决此错误?
最佳答案
我查看了source code对于版本 0.1。 “init”关键字的唯一有效值为“nvecs”或“random”。默认值为“nvecs”。如果您尝试其中任何一个,您将消除错误:
P, F, D, A, fit, itr, exectimes = parafac2.parafac2(T, 3, init='nvecs', ma_iter=5, conv= 4)
或者
P, F, D, A, fit, itr, exectimes = parafac2.parafac2(T, 3, init='random', ma_iter=5, conv= 4)
关于python - 使用 scikit-tensor 进行张量分析,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/36590532/
我想矢量化以下代码: def style_noise(self, y, style): n = torch.randn(y.shape) for i in range(n.shape[
对于给定的二维张量,我想检索值为 1 的所有索引。我希望能够简单地使用 torch.nonzero(a == 1).squeeze(),它将返回张量([1, 3, 2])。但是,torch.nonze
如果 x 是 dtype torch.float 的 torch.Tensor 那么操作 x.item() 和 float(x)完全一样? 最佳答案 操作x.item() 和float(x) 是不一样
我正在尝试提取 n 点 3D 坐标和 b 批处理中的特定行。本质上,我的张量 T1 的形状为 b*n*3。我有另一个形状为 b * n 的 bool 张量 T2,指示需要获取 n 的哪些行。本质上我的
以下代码掩码很好 mask = targets >= 0 targets = targets[mask] 但是,当我尝试使用两个条件进行屏蔽时,它会给出 RuntimeError: Boolean v
我正在定义一个简单的 conv2d 函数来计算输入和内核(均为 2D 张量)之间的互相关,如下所示: import torch def conv2D(X, K): h = K.shape[0]
作为训练 CNN 的一部分,我正在使用数组 inputs包含 对象。我想轮换一个人一些随机度数的对象 x ,如下所示: def rotate(inputs, x): # Rotate inpu
我有一个索引列表和一个具有形状的张量: shape = [batch_size, d_0, d_1, ..., d_k] idx = [i_0, i_1, ..., i_k] 有没有办法用索引 i_0
假设我有张量 t = torch.tensor([1,2,3,4,5]) 我想使用相同大小的索引张量来拆分它,该张量告诉我每个元素应该进行哪个拆分。 indices = torch.tensor([0
我尝试从生成器构建一个张量,如下所示: >>> torch.tensor(i**2 for i in range(10)) Traceback (most recent call last): F
假设我有一个一维 PyTorch 张量 end_index长度为L。 我想构造一个 2D PyTorch 张量 T有 L 行,其中 T[i,j] = 2什么时候j < end_index[i]和 T[
我在 pytorch 中有一个张量 x 比方说形状 (5,3,2,6) 和另一个形状 (5,3,2,1) 的张量 idx,其中包含第一个张量中每个元素的索引。我想用第二个张量的索引对第一个张量进行切片
我有以下火炬张量: tensor([[-0.2, 0.3], [-0.5, 0.1], [-0.4, 0.2]]) 以及以下 numpy 数组:(如有必要,我可以将其转换为其他内
tf.data.Dataset的构造函数接受一个参数 variant_tensor ,这只是 documented as : A DT_VARIANT tensor that represents t
我有: inp = torch.randn(4, 1040, 161) 我还有另一个名为 indices 的张量值: tensor([[124, 583, 158, 529], [1
我有一个张量 inps ,其大小为 [64, 161, 1]我有一些新数据d大小为 [64, 161] .如何添加 d至inps这样新的大小是[64, 161, 2] ? 最佳答案 使用 .unsqu
我有张量 t = torch.tensor([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]]) 和一个查询张量 q = torch.te
给定一个 3d 张量,说:batch x sentence length x embedding dim a = torch.rand((10, 1000, 96)) 以及每个句子的实际长度数组(或张
我想使用 [int, -1] 符号 reshape 张量(例如,压平图像)。但我事先并不知道第一个维度。一个用例是在大批量上进行训练,然后在较小的批量上进行评估。 为什么会出现以下错误:获取包含“_M
我有两个 torch 张量。一个形状为 [64, 4, 300],一个形状为 [64, 300]。我如何连接这两个张量以获得形状为 [64, 5, 300] 的合成张量。我知道用于此的 tensor.
我是一名优秀的程序员,十分优秀!