gpt4 book ai didi

python - TensorFlow: 'ValueError: No gradients provided for any variable'

转载 作者:太空宇宙 更新时间:2023-11-03 16:27:06 27 4
gpt4 key购买 nike

我正在 tensorflow 中实现 DeepMind 的 DQN 算法,并在调用 optimizer.minimize(self.loss) 的行上遇到此错误:

ValueError:没有为任何变量提供渐变...

通过阅读有关此错误的其他帖子,我发现这意味着损失函数不依赖于任何用于设置模型的张量,但在我的代码中我看不出这是怎么回事。 qloss() 函数显然依赖于对 predict() 函数的调用,而该函数又依赖于所有层张量来进行计算。

The model setup code can be viewed here

最佳答案

我发现问题在于,在我的 qloss() 函数中,我从张量中提取值,对它们进行操作并返回值。虽然这些值确实取决于张量,但它们本身并未封装在张量中,因此 TensorFlow 无法判断它们取决于图中的张量。

我通过更改 qloss() 解决了这个问题,以便它直接对张量进行操作并返回一个张量。这是新功能:

def qloss(actions, rewards, target_Qs, pred_Qs):
"""
Q-function loss with target freezing - the difference between the observed
Q value, taking into account the recently received r (while holding future
Qs at target) and the predicted Q value the agent had for (s, a) at the time
of the update.

Params:
actions - The action for each experience in the minibatch
rewards - The reward for each experience in the minibatch
target_Qs - The target Q value from s' for each experience in the minibatch
pred_Qs - The Q values predicted by the model network

Returns:
A list with the Q-function loss for each experience clipped from [-1, 1]
and squared.
"""
ys = rewards + DISCOUNT * target_Qs

#For each list of pred_Qs in the batch, we want the pred Q for the action
#at that experience. So we create 2D list of indeces [experience#, action#]
#to filter the pred_Qs tensor.
gather_is = tf.squeeze(np.dstack([tf.range(BATCH_SIZE), actions]))
action_Qs = tf.gather_nd(pred_Qs, gather_is)

losses = ys - action_Qs
clipped_squared_losses = tf.square(tf.minimum(tf.abs(losses), 1))

return clipped_squared_losses

关于python - TensorFlow: 'ValueError: No gradients provided for any variable',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37889125/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com