gpt4 book ai didi

python - 有没有更快的方法来查找两个数组(Python)中的匹配特征?

转载 作者:太空宇宙 更新时间:2023-11-03 16:26:36 26 4
gpt4 key购买 nike

我试图遍历一个文件中的每个功能(每行 1 个),并根据第二个文件中该行的一列查找所有匹配的功能。我有这个解决方案,它可以在小文件上完成我想要的操作,但在大文件上速度非常慢(我的文件有>20,000,000行)。 Here's a sample of the two input files.

我的(慢)代码:

FEATUREFILE = 'S2_STARRseq_rep1_vsControl_peaks.bed'
CONSERVATIONFILEDIR = './conservation/'
with open(str(FEATUREFILE),'r') as peakFile, open('featureConservation.td',"w+") as outfile:
for line in peakFile.readlines():
chrom = line.split('\t')[0]
startPos = int(line.split('\t')[1])
endPos = int(line.split('\t')[2])
peakName = line.split('\t')[3]
enrichVal = float(line.split('\t')[4])

#Reject negative peak starts, if they exist (sometimes this can happen w/ MACS)
if startPos > 0:
with open(str(CONSERVATIONFILEDIR) + str(chrom)+'.bed','r') as conservationFile:
cumulConserv = 0.
n = 0
for conservLine in conservationFile.readlines():
position = int(conservLine.split('\t')[1])
conservScore = float(conservLine.split('\t')[3])
if position >= startPos and position <= endPos:
cumulConserv += conservScore
n+=1
featureConservation = cumulConserv/(n)
outfile.write(str(chrom) + '\t' + str(startPos) + '\t' + str(endPos) + '\t' + str(peakName) + '\t' + str(enrichVal) + '\t' + str(featureConservation) + '\n')

最佳答案

对于我的目的来说,最好的解决方案似乎是为 pandas 重写上面的代码。以下是对一些非常大的文件最适合我的方法:

from __future__ import division
import pandas as pd

FEATUREFILE = 'S2_STARRseq_rep1_vsControl_peaks.bed'
CONSERVATIONFILEDIR = './conservation/'

peakDF = pd.read_csv(str(FEATUREFILE), sep = '\t', header=None, names=['chrom','start','end','name','enrichmentVal'])
#Reject negative peak starts, if they exist (sometimes this can happen w/ MACS)
peakDF.drop(peakDF[peakDF.start <= 0].index, inplace=True)
peakDF.reset_index(inplace=True)
peakDF.drop('index', axis=1, inplace=True)
peakDF['conservation'] = 1.0 #placeholder

chromNames = peakDF.chrom.unique()

for chromosome in chromNames:
chromSubset = peakDF[peakDF.chrom == str(chromosome)]
chromDF = pd.read_csv(str(CONSERVATIONFILEDIR) + str(chromosome)+'.bed', sep='\t', header=None, names=['chrom','start','end','conserveScore'])

for i in xrange(0,len(chromSubset.index)):
x = chromDF[chromDF.start >= chromSubset['start'][chromSubset.index[i]]]
featureSubset = x[x.start < chromSubset['end'][chromSubset.index[i]]]
x=None
featureConservation = float(sum(featureSubset.conserveScore)/(chromSubset['end'][chromSubset.index[i]]-chromSubset['start'][chromSubset.index[i]]))
peakDF.set_value(chromSubset.index[i],'conservation',featureConservation)
featureSubset=None

peakDF.to_csv("featureConservation.td", sep = '\t')

关于python - 有没有更快的方法来查找两个数组(Python)中的匹配特征?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37929772/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com