gpt4 book ai didi

python - 使用 rpy2 从 Python 运行 R 的 aov() 混合效果模型

转载 作者:太空宇宙 更新时间:2023-11-03 16:16:53 32 4
gpt4 key购买 nike

首先为了查看 rpy2 是否正常工作,我运行了一个简单的模型 (stats.lm):

import pandas as pd
from rpy2 import robjects as ro
from rpy2.robjects import pandas2ri
pandas2ri.activate()
from rpy2.robjects.packages import importr
stats = importr('stats')
R = ro.r
df = pd.DataFrame(data={'subject':['1','2','3','4','5','1','2','3','4','5'],'group':['1','1','1','2','2','1','1','1','2','2'],'session':['1','1','1','1','1','2','2','2','2','2'],'covar':['1', '2', '0', '2', '1', '1', '2', '0', '2', '1'],'result':[-6.77,6.11,5.67,-7.679,-0.0930,0.948,2.99,6.93,6.30,9.98]})

rdf=pandas2ri.py2ri(df)
result=stats.lm('result ~ group * session + covar',data=rdf)
print(R.summary(result).rx2('coefficients'))

工作正常:

                 Estimate Std. Error    t value  Pr(>|t|)
(Intercept) 5.323667 4.458438 1.1940654 0.2984217
group2 -3.729167 5.227982 -0.7133090 0.5150618
session2 1.952667 4.458438 0.4379710 0.6840198
covar1 -5.937500 5.107783 -1.1624418 0.3096835
covar2 -5.023500 5.107783 -0.9834992 0.3810438
group2:session2 10.073333 7.049410 1.4289612 0.2262206

我还检查了我的混合效果模型在 R 中是否正常工作:

df <- read.table(header=T, con <- textConnection('
covar group result session subject
1 1 -6.770 1 1
2 1 6.110 1 2
0 1 5.670 1 3
2 2 -7.679 1 4
1 2 -0.093 1 5
1 1 0.948 2 1
2 1 2.990 2 2
0 1 6.930 2 3
2 2 6.300 2 4
1 2 9.980 2 5'))
close(con)

mixed <- aov(result ~ group*session + covar + Error(as.factor(subject)/session),data=df)
summary(mixed)

这似乎也有效:

Error: as.factor(subject)
Df Sum Sq Mean Sq F value Pr(>F)
group 1 0.65 0.65 0.012 0.924
covar 1 16.68 16.68 0.301 0.638
Residuals 2 110.76 55.38

Error: as.factor(subject):session
Df Sum Sq Mean Sq F value Pr(>F)
session 1 89.46 89.46 8.002 0.0663 .
group:session 1 60.88 60.88 5.446 0.1018
Residuals 3 33.54 11.18
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

问:为什么混合效果模型在这里不起作用?

result2=stats.aov('result ~ group*session + covar + Error(as.factor(subject)/session)',data=rdf)
print(R.summary(result2).rx2('coefficients'))

这是错误消息:

//anaconda/lib/python2.7/site-packages/rpy2/rinterface/__init__.py:185: RRuntimeWarning: Error: $ operator is invalid for atomic vectors

warnings.warn(x, RRuntimeWarning)
---------------------------------------------------------------------------
RRuntimeError Traceback (most recent call last)
<ipython-input-2-aab76c72fbf3> in <module>()
----> 1 result2=stats.aov('result ~ group*session + covar + Error(as.factor(subject)/session)',data=rdf)
2 print(R.summary(result2).rx2('coefficients'))

//anaconda/lib/python2.7/site-packages/rpy2/robjects/functions.pyc in __call__(self, *args, **kwargs)
176 v = kwargs.pop(k)
177 kwargs[r_k] = v
--> 178 return super(SignatureTranslatedFunction, self).__call__(*args, **kwargs)
179
180 pattern_link = re.compile(r'\\link\{(.+?)\}')

//anaconda/lib/python2.7/site-packages/rpy2/robjects/functions.pyc in __call__(self, *args, **kwargs)
104 for k, v in kwargs.items():
105 new_kwargs[k] = conversion.py2ri(v)
--> 106 res = super(Function, self).__call__(*new_args, **new_kwargs)
107 res = conversion.ri2ro(res)
108 return res

RRuntimeError: Error: $ operator is invalid for atomic vectors

我使用以下帖子作为指导:

rpy2 - Minimal example of rpy2 regression using pandas data frame

R 中的混合方差分析 - https://stats.stackexchange.com/questions/45264/why-does-a-mixed-design-using-rs-aov-need-the-between-subject-factors-specific

最佳答案

[投票只是因为你有一个很好的小而独立的例子。]

R 相当于您对 rpy2 所做的操作如下(并返回相同的错误)

> mixed <- aov("result ~ group*session + covar + Error(as.factor(subject)/session)",data=df)
Error: $ operator is invalid for atomic vectors

公式对象与字符串不同。

> class(y ~ x)
[1] "formula"
> class("y ~ x")
[1] "character"

rpy2 有一个构造函数可以从 Python 字符串构建 R 公式:

from rpy2.robjects import Formula
fml = Formula("y ~ x")

将其传递给 aov() 而不是字符串。

关于python - 使用 rpy2 从 Python 运行 R 的 aov() 混合效果模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38876274/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com